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Abstract

In this paper we address the problem of classifying vector sets. We motivate and introduce a novel method based on comparisons between
corresponding vector subspaces. In particular, there are two main areas of novelty: (i) we extend the concept of principal angles between linear
subspaces to manifolds with arbitrary nonlinearities; (ii) it is demonstrated how boosting can be used for application-optimal principal angle
fusion. The strengths of the proposed method are empirically demonstrated on the task of automatic face recognition (AFR), in which it is

shown to outperform state-of-the-art methods in the literature.
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1. Introduction

Many computer vision tasks can be cast as learning problems
over vector sets. In object recognition, for example, a set of
vectors may represent a variation in an object’s appearance—be
it due to camera pose changes, non-rigid deformations or vari-
ation in illumination conditions. The objective of this work is
to classify a novel set of vectors to one of the training classes,
each also represented by a vector set. In this paper, learning
concepts will be illustrated on sets of face appearance images
using the AFR paradigm, although the reader should note that
no domain-specific information is actually used.

1.1. Previous work

Most of the previous work on matching vector or image sets
exploits their semantics to a certain degree, for example by
modelling temporal coherence between consecutive vectors i.e.
by matching sequences. By their nature, these methods are of
little relevance to the work presented in this paper, so we do not
address them here. Broadly speaking, in the recent literature
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we recognize two groups of approaches to learning over sets
of vectors: statistical and principal-angle based.

1.1.1. Statistical methods

Statistical learning approaches rely on the assumption
that vectors x of the ith class are independently and identi-
cally (i.i.d.) drawn samples from p® (x). The problem of set
matching then becomes that of estimating each underlying
probability density and comparing two such estimates. In the
work of Shakhnarovich et al. [1], densities p(i)(x) are mod-
elled as multivariate Gaussians, estimated with probabilistic
principal component analysis (PCA) [2] and compared us-
ing the Kullback-Leibler (KL) divergence [3]. Arandjelovié
et al. criticized this approach for its insufficiently expressive
modelling and proposed a kernel-based method to implicitly
model nonlinear, but intrinsically low-dimensional manifolds
of faces [4]. In this work, the authors also argue against the
use of KL divergence due to its asymmetry and demonstrate
a superior performance of the resistor—average distance [5]
on the task of AFR under mildly varying imaging conditions.
In Ref. [6], a Gaussian mixture model (GMM) is proposed
for high-dimensional density estimation. The advantage of
this approach over the previously mentioned kernel method
lies in its more principled modelling of densities confined to
nonlinear manifolds; however this benefit comes at the cost
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of increased difficulty of divergence computation, performed
using a Monte—Carlo algorithm.

1.1.2. Principal angle-based methods

Principal angles are minimal angles between vectors of two
subspaces (see Section 2). Since the concept of principal an-
gles was first introduced by Hotelling in Ref. [7], it has been
applied in various fields [8—10]. Of most relevance to the work
addressed in this paper is the mutual subspace method (MSM)
of Yamaguchi et al. [11]. In MSM the sum of cosines of the
first (i.e. smallest) few principal angles! is used as a similar-
ity measure between linear subspaces used to compactly char-
acterize vector sets. MSM has been successfully used for face
recognition [11] and ship identification [12] (for evaluation re-
sults also see Refs. [4,6]). In the related works [32,13], vec-
tor sets are projected to the linear subspace that attempts to
maximize the separation (in terms of principal angles) between
vector spaces corresponding to different classes, under the as-
sumption of their linearity.

MSM-based methods have two major shortcomings: the lim-
ited capability of modelling nonlinear pattern variations and the
ad hoc fusion of information contained in different principal an-
gles. The assumption of linearity of modelled vector subspaces
is important, both because it means that MSM is incapable of
differentiating between two nonlinear manifolds embedded in
the same linear space and because of the sensitivity of such
estimate to particular data variation [4]. In Ref. [14] Wolf and
Shashua show how principal angles between nonlinear sub-
spaces can be computed using the “kernel trick” [15]. However,
the reported evaluation was performed on a database of a rather
small size, making it difficult to judge the performance of their
method. Additionally, as in all kernel approaches, finding the
optimal kernel function is a difficult problem.

An attractive feature of MSM-based methods is their compu-
tational efficiency: principal angles between linear subspaces
can be computed rapidly [16], while the estimation of lin-
ear subspaces can be performed in an incremental manner
[17-20].

1.1.3. Densities vs. subspaces

As a conclusion to this section, we would like to briefly
discuss the advantages and disadvantages of the two learn-
ing approaches: one which learns densities confined to low-
dimensional subspaces and the other which learns the subspaces
themselves. In many computer vision applications, due to dif-
ferent data acquisition conditions, the frequency of occurrence
of a particular pattern can vary arbitrarily between the training
stage and a novel input to the system.> In this case, subspace
learning techniques are more applicable as they effectively
place a uniform prior over a space of possible pattern variation.
On the other hand, if there is a reason to believe that train-
ing and novel data share some statistical properties, density-

I statistics, the cosines of canonical angles are termed canonical cor-
relations.

2The term “arbitrarily” should be taken in practical terms i.e. given the
parameters which one can realistically expect to model, control or affect.

based methods may produce better results. In AFR work of
Arandjelovi¢ et al. [6], for example, the authors note that
anatomical constraints and the constraints of the imaging setup
make certain head poses more likely than others, therefore
opting for a statistical approach to recognition. The point to
take is that neither of the two approaches is inherently the
right one, but that the choice between the two is dictated by a
particular problem.

2. Boosted manifold principal angles (BoMPA)

In this work (the earlier conference version appeared in
Ref. [33]), we are interested in discriminating between abstract
classes represented as vector sets without any knowledge of
what the data represents. Before tackling this problem, it is im-
portant to recognize the difficulties of comparing vector sets
common to its different semantic instances:

e FExpressiveness: Pattern changes across and within modelled
vector sets often exhibit significant nonlinearities. Seeing that
differences within a class can oftentimes be greater than be-
tween classes (in Euclidean distance sense), it is important
to use a model flexible enough to capture this complex varia-
tion, see Fig. 1 for an example. In Section 2.3 we achieve this
by moving away from the typically used parametric models
and formulate a method that uses canonical correlations and
Gaussian mixtures matching.

e Graceful degradation: The exact vectors used as an input (ei-
ther as training or test) to a practical system can be expected
to vary from time to time, depending on the exact data acqui-
sition protocol employed. In particular, sometimes more and
sometimes less data is available. In the context of face recog-
nition, for example, this may be because the user has not
assumed certain poses or because face detection has failed.
Graceful degradation refers to slow decay in performance
of a learning algorithm as less and less data is available.
Our canonical angles-based framework is already exhibit-
ing this property in that only the most similar and discrimi-
nating regions of two subspaces are actually compared (see
Sections 2.1 and 2.2). Further robustness is achieved by our
extension of the similarity function to nonlinear manifolds in
Section 2.3 by discarding all but the most reliable matching
linear patches.

e Robustness to noise: Noise is very much an inherent prob-
lem in any practical application. In computer vision, for
example, vector patterns considered may represent appear-
ance images—these are affected by noise sources such as
quantum, quantization or due to spatial discretization. Our
assumption of intrinsically low-dimensional pattern varia-
tions within a set, corrupted by isotropic Gaussian noise, are
captured well using probabilistic PCA in Section 2.3.

e Numerical stability and efficiency: Closely related to the pre-
viously mentioned issue of noise in data are numerical issues
pertaining to the implementation of a particular algorithm.
It is an imperative for a practical algorithm to be numeri-
cally stable and, often, be time efficient. These issues are
discussed in Sections 2.3 and 3.
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Fig. 1. Face vector sets: 10 samples of two typical face sets used to illustrate concepts proposed in this paper (top) and the corresponding patterns in the 3D
principal component subspaces (bottom), estimated from data. The sets capture appearance changes of faces of two different individuals as they performed
unconstrained head motion in front of a fixed camera. The corresponding pattern variations (blue circles) are highly nonlinear, with a number of outliers

present (red stars).

We will often refer back to these four requirements through-
out the paper, using them to motivate different features of the
proposed method.

2.1. Principal angles

Principal, or canonical, angles 0<60;< - <0p<(n/2)
between two D-dimensional linear subspaces U; and U, are
uniquely defined as the minimal angles between any two
vectors of the subspaces:

cos 0; = max max uiTv,' (1)
u;eUl V,'EUz
subject to:
Ty —vliv, — Ty =viy. =
wu=v;,vi=1 wuj=v;v;=0,

j=1,...,i—1 2)

We will refer to w; and v; as the ith pair of principal vectors.
Intuitively, the first pair of principal vectors corresponds to the
most similar modes of variation of two linear subspaces; every
next pair to the most similar modes orthogonal to all previous
ones. This concept is illustrated in Fig. 2 on the example of
sets of face appearance images.

2.2. Learning the subspace similarity function

In Section 1.1 it was argued that one of the weaknesses of
previous approaches in the literature is their use of only the first

Fig. 2. Principal vectors in MSM: The first three pairs (top and bottom rows)
of principal vectors for a comparison of two linear subspaces corresponding to
the same (a) and different individuals (b). In the former case, the most similar
modes of pattern variation, represented by principal vectors, are very much
alike in spite of different illumination conditions used in data acquisition.

few principal angles. While these do correspond to most similar
modes of variation of two subspaces, they may be caused by ex-
trinsic factors: in the case of face images these may be changed
corresponding to extreme illumination conditions, see Fig. 3(a).
Given a set of first N principal angles & = {01, ..., Oy}, our
aim is to learn the optimal similarity function f(®) between
the two subspaces.

2.2.1. Boosted principal angles

In general, each principal angle 60; carries some informa-
tion for discrimination between the corresponding two sub-
spaces. We use this to build simple weak classifiers .#(0;) =
sign[cos(0;) — C]. In the proposed method, these are combined

10.1016/j.patcog.2006.12.030
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Fig. 3. MSM, BPA and MPA: (a) The first three principal vectors between two linear subspaces which MSM incorrectly classifies as corresponding to the
same person (the two data sets are shown in Fig. 1). In spite of different identities, the most similar modes of variation are very much alike and can be
seen to correspond to especially difficult illuminations. (b) Boosted principal angles (BPA), on the other hand, chooses different principal vectors as the most
discriminating—these modes of variation are now less similar between the two sets. (¢) Modelling of nonlinear manifolds corresponding to the two image
sets produces a further improvement. Shown are the most similar modes of variation amongst all pairs of linear manifold patches. Local information is well
captured and even these principal vectors are now very dissimilar.

using the now acclaimed AdaBoost algorithm [21]. In sum-
mary, AdaBoost learns a weighting {w;} of decisions cast by
weak learners to form a classifier .#Z(®):

N | N a Optimal angle weighting
M(O) =sign | Y wid () =5 Y wi . 3) 045 L
i=1 i=1 04 | 1
In an iterative update scheme classifier performance is opti- 0.35 1
mized on training data which consists of in-class and out-of- £ 03| |
class features (i.e. principal angles). Let the training database 2
consist of sets 51, ..., Sk = {S;}, corresponding to K classes. ; 0.25 | 1
In the framework described, the K (K — 1)/2 out-of-class prin- 8 o2t |
cipal angles are computed between pairs of linear subspaces g 015 | |

corresponding to training data sets {S;}, estimated using PCA.
On the other hand, the K in-class principal angles are computed 01
between a pair of randomly drawn subsets for each S;. PCA was
adopted to learn effective low-dimensional global subspaces of
image sets. It has been known face image classes are well- 0
characterized by eigen-subspaces, which have also been proven

to be beneficial in low computational complexity of subsequent

0.05

0 2 4 6 8 10 12 14 15
Principal angle number

principal angle analysis (See Section 3.2). b Performance improvement
We use the learnt weights {w;} for computing the following 0.96

similarity measure between two linear subspaces: 095 |

1 ny:lwl- cos(6;) 0.94
1) = - =y ——". o)

Dim Wi g 093 ¢ ¢
© : -

A typical set of weights {w;} we obtained for our AFR appli- g 0.92 r : &
cation is shown graphically in Fig. 4(a). The plot shows an in- 2 091 : M 1
teresting result: the weight corresponding to the first principal g 09 L : |
angle is not the greatest. Rather it is the second principal an- & :
gle that is most discriminating, followed by the third one. This 089 1 ]
confirms our observation that the most similar mode of varia- 088 r i
tion across two subspaces can indeed be due an extrinsic factor. 087 I |
Fig. 3(b) shows the three most discriminating principal vector 0.86 M ) ) ) ) ) ) )
pairs selected by our algorithm for data incorrectly classified 0 2 4 6 8 10 12 14 15
by MSM—the most weighted principal vectors are now much Principal angle number

less similar. The gain achieved with boosting is also apparent

from Fig. 4(b). A significant improvement can be seen both for Fig. 4. Boosted principal angles: (a) A typical set of weights corresponding to

a small and a large number of principal angles. In the former weak principal angle-based classifiers, obtained using AdaBoost. This figure

case this is because our algorithm chooses not the first but the confirms our criticism of MSM-based methods for (i) their simplistic fusion
.. . . of information from different principal angles and (ii) the use of only the

most discriminating set of angles. The latter case is practically first few angles, see Section 1.1. (b) The average performance of a simple

more important—as more principal angles are added to MSM, MSM classifier and our boosted variant.
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its performance first improves, but after a certain point it starts
worsening. This highly undesirable behaviour is caused by ef-
fectively equal weighting of base classifiers in MSM. In con-
trast, the performance of our algorithm never decreases as more
information is added. As a consequence, no further provision
for choosing the optimal number of principal angles is needed
by the weights learnt.

At this point it is worthwhile mentioning the work of Maeda
et al. [22] in which the third principal angle was found to be
useful for discriminating between sets of images of a face and
its photograph. Much like the methods described in Section
1.1, the use of a single principal angle was motivated only
empirically—the described framework can be used for a more
principled feature selection in this setting as well.

Basically, the problem we tackled by Adaboost is to learn
the best combination of principal angles and the individual
importance of principal angles. The entire parameter space of
this problem is certainly huge. We have proposed Adaboost
as a reasonable efficient method, which is based on learning.
Using the learnt weights we could eliminate special provisions
to decide the best combinations and weights of principal angles.

2.3. Nonlinear subspaces

The assumption that patter variations within each class are
well represented by a linear subspace is usually severely limit-
ing, see Fig. 1. Our aim is to extend the described framework
of boosted principal angles to being able to effectively capture
nonlinear data behaviour. We propose a method that combines
global manifold variations with more subtle, local ones.

Without the loss of generality, let S and S, be two vector
sets and @ the set of principal angles between two linear sub-
spaces. We derive a measure of similarity p between S; and

S> by comparing the corresponding linear subspaces U > and

locally linear patches L<1’.)2 corresponding to piece-wise linear

approximations of manifolds of S7 and S»:

p(S1, $2) = (1 = ) fGLOWU1. Un)]
+amax fL[OLY, LY, (5)
L]

where fg and f; have the same functional form as f in
Eq. (4), but separately learnt base classifier weights {w;}. Put
in words, the proximity between two manifolds is computed
as a weighted average of the similarity between global modes
of data variation and the best matching local behaviour. The
two terms complement each other: the former provides (i)
robustness to noise, whereas the latter ensures (ii) graceful
performance degradation with missing data and (iii) flexibility
in modelling complex manifolds, see Fig. 3(c).

2.3.1. Finding stable locally linear patches

In the proposed framework, stable locally linear manifold
patches are found using mixtures of probabilistic PCA (PPCA)
[23]. The main difficulty in fitting of a PPCA mixture is the
requirement for the local principal subspace dimensionality to
be set a priori. We solve this problem by performing the fitting
in two stages. In the first stage, a GMM constrained to diagonal
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s L Single Gaussian component
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Fig. 5. Piece-wise linear manifolds: (a) Average eigenspectrum of diagonal
covariance matrices in a typical intermediate GMM fit. The manifold dimen-
sion was chosen to represent more than 90% energy, which is around 10.
(b) Description length as a function of the number of Gaussian components
in the intermediate and final, PPCA-based GMM fitting on a typical data set.
The latter results in fewer components and a significantly lower MDL.

covariance matrices is fitted first. This model is crude as it is
insufficiently expressive to model local variable correlations,
yet too complex (in terms of free parameters) as it does not
encapsulate the notion of intrinsic manifold dimensionality and
additive noise. However, what it is useful for is the estimation of
the intrinsic manifold dimensionality d, from the eigenspectra
of its covariance matrices, see Fig. 5(a). Once d is estimated
(typically d < D), the fitting is repeated using a mixture of
PPCA.

Both the intermediate diagonal and the final PPCA mix-
tures are estimated using the expectation maximization (EM)
algorithm [24] which is initialized by K-means clustering. Au-
tomatic model order selection is performed using the well-
known minimum description length (MDL) criterion [24], see
Fig. 5(b). Typically, the optimal (in the MDL sense) number of
components for face data sets used in Section 3 was three.

10.1016/j.patcog.2006.12.030
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Table 1

Database: Age distribution for database used in the experiments

Age 18-25 26-35 36-45 46-55 65+
Percentage 29% 45% 15% 7% 4%

Sequence 2

Fig. 6. Raw data: Frames from two typical video sequences from the database used for evaluation. The motion of the user was not controlled, leading to

different motion patterns and assumed poses.

Fig. 7. Illuminations: Different illumination conditions in databases. Note
that in spite of the same spatial arrangement of light sources for a particular
illumination configuration, its effect on the appearance of faces changes

significantly due to variations in people’s heights and their ad lib chosen
position relative to the camera.

Nl Wd &

Outliers

Fig. 8. Data preprocessing: (a) Left to right—typical input frame from a
video sequence of a person performing unconstrained head motion (320 x 240
pixels), output of the face detector (72 x 72 pixels) and the final image
after resizing to uniform scale (50 x 50 pixels) and histogram equalization.
(b) Typical outliers—face detector false positives—present in our data.

3. Empirical evaluation

The proposed algorithm was evaluated in the framework of
automatic face recognition. We used a database with 100 indi-
viduals of varying age (see Table 1) and ethnicity, and equally
represented genders. For each person in the database we col-

0.98 T T " T . .

0.96 r 1
0.94 | 1
0.92

/L

|~
0.88 |
0.86 | ‘/ ]

0.84 1

Recognition rate

0.82 1

0.8 —A&— MPA

—e— BoMPA

078 1 I T T I I
0 0.2 0.4 0.6 0.8 1

alpha

Fig. 9. Accuracy of MPA and BoMPA for the different setting of o: The best
performance is observed at around 0.5 for both methods.

lected seven video sequences of the person in arbitrary motion
(significant translation, yaw and pitch, and negligible roll). The
users were instructed not to perform extreme facial expressions
but many users talked or smiled during the acquisition, see
Fig. 1. Each sequence was recorded in a different illumination
setting for 10s at 10 fps and 320 x 240 pixel resolution, see
Fig. 6.3 After automatic localization using a cascaded detec-
tor [25] and cropping to the uniform scale of 50 x 50 pixels,
images of faces were histogram equalized, see Fig. 8. Training
of all algorithms was performed with data acquired in a single
illumination setting and testing with a single other—we used 9
randomly selected training/test combinations, see Figs. 6-8.

3A thorough description of the database with examples of video
sequences is available at http://mi.eng.cam.ac.uk/~oa214/academic/data/
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Table 2

Evaluation results: The mean recognition rate and its standard deviation across different training/test illuminations (in %)

KLD NN-HD-PCA NN-HD-LDA NN-LDA Facelt MSM KPA MPA BoMPA
Mean 19.8 44.6 40.7 76.6 87.11 84.9 89.1 89.7 92.6
std 9.7 7.9 6.6 7.8 8.8 6.8 10.1 55 43
Time 7.8 11.8 11.8 11.8 — 0.8 45 7.0 7.0
The last row shows the average time in seconds for 100 set comparisons.
3.1. Methods 14 ; ; ; ;
We compared the performance of our learning algorithm, 12
without (MPA) and with (BoMPA) boosted feature selection,
to that of: . 1
<
=)
[}
e KL divergence algorithm (KLD) of Shakhnarovich = 08 |
etal. [1],% 3
. 4 @ 06
e MSM of Yamaguchi et al. [11], s
e kernel principal angles (KPA) of Wolf and Shashua [14]° < 04 |
and ’
e nearest neighbour (NN) in the sense of the shortest and Haus- 02 L
dorff distance (HD),6 in (i) LDA [26] and (ii) PCA [27]
subspaces, estimated from data, 0 « o PN o &

e NN by Facelt (v.5.0), the commercial face recognition soft-
ware of Identix, which ranked top overall in the Face Recog-
nition Vendor test [34,35].

In KLD 90% of data energy was explained by the principal
subspace used. In MSM, the dimensionality of PCA subspaces
was set to 9 [13]. A sixth degree monomial expansion kernel
was used for KPA [14]. In BoOMPA, we set the value of param-
eter o in (5) to 0.5. See the performance of the method for the
different setting of o in Fig. 9. All algorithms were preceded
with PCA estimated from the entire training data set which, de-
pending on the illumination setting used for training, resulted
in dimensionality reduction to around 150 (while retaining 95%
of data energy).

3.2. BoMPA implementation

From a practical stand, there are two key points in the imple-
mentation of the proposed method: (i) the computation of prin-
cipal angles between linear subspaces and (ii) time efficiency.
These are now briefly summarized for the implementation used
in the evaluation reported in this paper. We compute the cosines
of principal angles using the method of Bjorck and Golub [16],
as singular values of the matrix BlTBz where Bj » are orthonor-
mal basis of two linear subspaces. This method is numerically
more stable than the eigenvalue decomposition-based method
used in Ref. [11] and with roughly the same computational
demands, see Ref. [16] for a thorough discussion on numer-
ical issues pertaining to the computation of principal angles.

4The algorithm was reimplemented through consultation with the
authors.

SWe used the original authors’ implementation.

61t is defined as maxy, eg; Miny, es, d(x1, x2).

1 2 3 4 5 6 7 8 9
Kernel principal angle number

Fig. 10. Boosted kernel principal angles: A typical set of weights correspond-
ing to weak kernel principal angle-based classifiers, obtained using AdaBoost.
This shows that no discriminatory information was contained in the first few
principal angles in the kernel space.

A computationally far more demanding stage of the proposed
method is the PPCA mixture estimation. In our implementa-
tion, a significant improvement was achieved by dimension-
ality reduction using the incremental PCA algorithm of Hall
et al. [18]. Finally, we note that the proposed model of pattern
variation within a set inherently places low demands on storage
space.

3.3. Results

The performance of evaluated recognition algorithms is
summarized in Table 2. Firstly, the KL-Divergence (KLD)
based method achieved by far the worst recognition rate. See-
ing that the illumination conditions varied across data and that
the face motion was largely unconstrained, the distribution
of intra-class face patterns was significant making this result
unsurprising. This is consistent with results reported in the lit-
erature [6]. Note the much poorer performance of the two NN
methods in the Hausdorff distance (HD) sense in PCA and LDA
subspaces than the NN method taking the shortest distance in
LDA subspace. This can be similarly explained as for the poor
performance of the KLD method. The intra-class sets have the
significantly different overall distributions and contain only few
similar face patterns. The NNs in the HD sense might fail to re-
flect such similar patterns due to the max operator defined in the
HD measure. The NN method in the shortest distance sense in

10.1016/j.patcog.2006.12.030
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LDA subspace performed much better. The LDA-based meth-
ods have long been established in the single-shot face recogni-
tion literature, e.g. see Ref. [26,28-31]. Facelt, which has been
ranked at the top of the well-recognized face recognition vendor
tests twice, delivered impressive accuracy but with large devia-
tion for the different illumination settings. Note that the original
320 x 240 images with the localization results by [25] were in-
put to the software, which involves its own training and prepro-
cessing of face images [34,35]. This method can be considered
as a proxy for gauging the difficulty of the recognition task.
The performance of the four principal angle-based methods
confirms the premises of our work. Basic MSM performed well,
but worst of the four. The inclusion of nonlinear manifold mod-
elling, either by using the “kernel trick” or a mixture of linear
subspaces, achieved an increase in the recognition rate of about
5%. While the difference in the average performance of MPA
and the KPA methods is probably statistically insignificant, it
is worth noting the greater robustness to specific imaging con-
ditions of our MPA, as witnessed by a much lower standard
deviation of the recognition rate. Further performance increase
of 3% is seen with the use of boosted angles, the proposed
BoMPA algorithm correctly recognizing 92.6% of the individu-
als with the lowest standard deviation of all methods compared.
For completeness, we also combined the KPA method with the
proposed boosting observing 2.2% accuracy gain over the KPA
and 10% standard deviation. The typical weights learnt for the
first few KPAs are shown in Fig. 10, where the first six an-
gles appear to be ineffective for discrimination in kernel space.
This is contrasted with the case of linear subspaces where only
the first one is less important than the successive few angles
as shown in Fig. 4(a). More flexibility of the first few KPAs
in finding similar modes might result in the loss of discrimi-
nation powers. An illustration of the improvement provided by
each novel step in the proposed algorithm is shown in Fig. 11.
Moreover, the receiver—operator characteristic curve in Fig. 12
compares the three methods, MSM/MPA/BoMPA in terms of
ratio of the true positive rate over the false positive rate. Finally,

its computational superiority to the best performing method in
the literature, Wolf and Shashua’s KPA, is clear from a 7-fold
difference in the average recognition time.

4. Conclusions and future work

In this paper we introduced a novel method for discrimina-
tion over vector sets. Our approach was based on modelling
pattern variations within a set and comparing them using prin-
cipal angles. We showed that principal angles provide an ef-
fective means of comparing only the most similar regions of
two linear subspaces, while achieving numerical stability and
robustness to noise. Our first contribution was to introduce a
learning framework by which focus is put on the most dis-
criminative regions of the subspaces. Next, we extended the
method to more effectively model non-linear pattern variations
within a set and proposed an extended similarity criterion. In
an extensive empirical evaluation it was demonstrated to per-
form better than state-of-the-art algorithms in the literature on
the task of face recognition from image sets, extracted from
700 face motion video sequences and including 70,000 detected
faces.

The main research direction we intend to pursue in the future
is the extension of the concept of principal angles to compar-
isons of probability densities. This would allow us to avoid the
hard cut-off of higher dimensions of linear subspaces that are
being compared. Additionally, it may prove beneficial to incor-
porate more specific domain knowledge, in particular illumi-
nation models, in guiding the mixture component estimation.
Finally, an interesting application of our work could be to use
an ensemble of BoMPA learners for object recognition using
local image features.
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