MCBoost: Multiple Classifier Boosting for Perceptual
Co-clustering of Images and Visual Features

Tae-Kyun Kim * Roberto Cipolla
Sidney Sussex College Department of Engineering
University of Cambridge University of Cambridge
Cambridge CB2 3HU, UK Cambridge CB2 1PZ, UK
t kk22@am ac. uk ci pol l a@am ac. uk
Abstract

We present a new co-clustering problem of images and visa#ilifes. The prob-
lem involves a set of non-object images in addition to a sethjéct images and
features to be co-clustered. Co-clustering is performealway that maximises
discrimination of object images from non-object imagesistemphasizing dis-
criminative features. This provides a way of obtainjpeyceptualjoint-clusters

of object images and features. We tackle the problem by samebusly boost-
ing multiple strong classifiers which compete for imageshmsjrtexpertise. Each
boosting classifier is an aggregation of weak-learnerssiraple visual features.
The obtained classifiers are useful for object detectiokstagiich exhibit multi-

modalities, e.g. multi-category and multi-view object eigion tasks. Exper-
iments on a set of pedestrian images and a face data set deat@rthat the

method yields intuitive image clusters with associateduies and is much su-
perior to conventional boosting classifiers in object diadasks.

1 Introduction

It is known that visual cellsvisual featurepselectively respond timagery patternsn perception.
Learning process may be associated with co-clusters oMfeatures and imagery data in a way
of facilitating image data perception. We formulate thighe context of boosting classifiers with
simple visual features for object detection task [3]. Theme two sets of images: a set of object
images and a set of non-object images, labelled as posittv@egative class members respectively.
There are also a huge number of simple image features, ontgkfsaction of which are selected to
discriminate the positive class from the negative clas$ify) = >, o,h;(x) wherex is an input
vector, oy, h; are the weight and the score ©th weak-learner using a single feature. As object
images typically exhibit multi-modalities, a single agggéon of simple features often does not
dichotomise all object images from non-object images. @ablem is to find out subsets of object
images, each of which is associated with a set of featuresm&ximising classification. Note that
image clusters to be obtained are coupled with selectedr=aand likewise features to be selected
are dependent on image clusters, requiring a concurrestecing of images and features.

See Figure 1 for an example where subsets of face images seenpge obtained with associated
features by the proposed method (Section 3). Featuresaredparound eyes, nose, mouth and etc.
as the cues for discriminating faces from background. A# dacial features are distributed dif-
ferently mainly according to face pose, the obtained pose-vace clusters are, therefore, intuitive
and desirable in perception. Note the challenges in agigaviis: The input set of face images are
mixed up by different faces, lighting conditions as well as@. Some are photographs of real-faces
and the others are drawings. Desired image clustersarebservablén input space. See Figure 2
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Figure 1:Perceptual co-clusters of images and visual feature§or given a set of face and random images
and simple visual features, the proposed method finds perceptual jogters of face images and features,
which facilitates classification of face images from random images. Face idastepose-wise obtained.

for the result of the traditional unsupervised method (lkangeclustering) applied to the face images.
Images of the obtained clusters are almost random with cespg@ose. To obtain perceptual face
clusters, a method requires a discriminative process artcbpaed representations (like the simple
features used). Technically, we must be able to cope withltrary initialisation of image clusters

(as target clusters are hidden) and feature selection amboge number of simple visual features.

The proposed method (Section 3) has potential for wideiegupins

in perceptual data exploration. It generally solves a newlustering Face cluster-1
problem of a data set (e.g. a set of face images) and a feati(eg. ,
simple visual features) in a way to maximise discriminatafrthe
data set from another data set (e.g. a set of random imagés).
method is also useful for object detection tasks. Boostioigssifier
with simple features [3] is a state-of-the-art in objectedtibn tasks.
It delivers high accuracy and is very time-efficient. Corti@mally,
multiple boosting classifiers are separately learnt fortiplel cate-
gories and/or multiple views of object images [6]. It is, lewer,
tedious to manually label category/pose for a large datarsstim-
portantly, it is not clear to define object categories anghesmf each
pose. Would there be a better partitioning for learning ipldtoost-
ing classifiers? We let this be a part of automatic learninthéproposed method. It simultaneously
boosts multiple strong classifiers, each of which has eiggeoh a particular set of object images by
a set of weak-learners.

Figure 2: Image sets ob-
tained by the k-means clus-
tering method.

The remainder of this paper is arranged as follows: we briefliew the previous work in Section 2
and present our solution in Section 3. Experiments and osiwis are drawn in Section 4 and
Section 5 respectively.

2 Related work

Existing co-clustering work (e.g. [1]) is formulated as arsupervised learning task. It simultane-
ously clusters rows and columns of a co-occurrence tabledyreaximising mutual information
between the cluster variables. Conversely, we make usas$ thbels for discriminative learning.
Using a co-occurrence table in prior work is also prohilitilue to a huge number of visual features
that we consider.

Mixture of Experts [2] (MOE) jointly learns multiple clasirs and data partitions. It much em-
phasises local experts and is suitable when input data canatoeally divided into homogeneous
subsets, which is, however, often not possible as obsenvEjure 2. In practice, it is difficult to
establish a good initial data partition and to perform ekpetection based on localities. Note that
EM in MoE resorts to a local optimum. Furthermore, the datditgans of MoE could be undesir-
ably affected by a large background class in our problemla@tinear transformations used in MoE
are limited for delivering a meaningful part-based repnéstgon of images.



Classifier 1 Classifier 2 Classifier 3

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 3: (left) Risk map for given two class data (circle and cross). The weakdesu(either a vertical or
horizontal line) found by Adaboost method [7] are placed on high rigkoms. (right) State diagram for the
concept of MCBoost.

Boosting [7] is a sequential method of aggregating multfpleak) classifiers. It finds weak-learners
to correctly classify erroneous samples in previous weakrers. While MoE makes a decision by
dynamically selected local experts, all weak-learnergrdmrte to a decision with learnt weights in

boosting classifier. As afore-mentioned, expert seledi@ndifficult problem when an input space
is not naturally divided into sub-regions (clusters). Bows classifier solves various non-linear
classification problems but cannot solve XOR problems whbefg half the data can be correctly

classified by a set of weak-learners. Two disjointed setseztkalearners, i.e. two boosting classi-
fiers, are required to conquer each half of data by a set of \ezakers.

Torralba et al. have addressed joint-learning of multipdedting classifiers for multiple category
and multiple view object detection [4]. The complexity ofuéting classifiers is reduced by sharing
visual features among classifiers. Each classifier in thethod is based on each of category-wise
or pose-wise clusters of object images, which requires rldabels for cateogry/pose, whereas we
optimise image clusters and boosting classifiers simubtasig.

3 MCBoost: multiple strong classifier boosting

Our formulation considerK strong classifiers, each of which is represented by a lirmabmation
of weak-learners as

He(x) =Y aphpe(x),  k=1,..K, (1)

wherea;; andhy, are the weight and the score ieth weak-learner ok-th strong classifier. Each
strong classifier is devoted to a subset of input patterosvaly repetition and each weak-learner
in a classifier comprises of a single visual feature and ahtuld. For aggregating multiple strong
classifiers, we formulate Noisy-OR as

P(x) =1-]](1 - Pu(x)), (2)

k

wherePy(x) = m It assigns samples to a positive class if any of classifiees @nd

assigns samples to a negative class if every classifier @mws/entional design in object detection
study [6] also favours OR decision as it does not requiresdias selection. An individual classifier
is learnt from a subset of positive samples and all negativeptes, enforcing a positive sample
to be accepted by one of the classifiers and a negative sampkerejected by all. Our derivation
builds on the previous Noisy-OR Boost algorithm [5], whiastbeen proposed for multiple instance
learning.

The sample weights are initialised by random partitionihgasitive samples, i.avy; = 1if x; € k
andw;; = 0 otherwise, wheré andk denotei-th sample and-th classifier respectively. We set
wy; = 1/K for all k’s for negative samples. For given weights, the method fiddseak-learners



Algorithm 1. MCBoost

Input: A data se{x;,y;) and a set of pre-defined weak-learners
Output: Multiple boosting classifierfl; (x) = Z;‘F:l apthpe(x),k =1.., K

1.Compute a reduced set of weak-learrigisy risk map (4) and randomly initialise the
weightswy;

2.Repeatfot =1,...,T:

3. Repeatfok =1,..., K:

4, Find weak-learners;,, that maximise) _, wy; - hi:(x;), hye € H.

5. Find the weak-learner weights,; that maximiseJ(H + ay¢hg:).

6

7

8.

Update the weights by, = % - Pu(x;).
End

End

Figure 4:Pseudocode of MCBoost algorithm

att-th round of boosting, to maximise
D wpihg(xi),  hy €H, 3

wherehy, € {—1,41} and™ is a reduced set of weak-learners for speeding up the prdpose
multiple classifier boosting. The reduced set is obtainetkbiricting the location of weak-learners
around the expected decision boundary. Each weak-ledrper,= signa’x + b), wherea andb
represent a simple feature and its threshold respectivatype represented ' (x — x,), where

X, IS interpreted as the location of the weak-learner. By limgitx, to the data points that have
high risk to be misclassified, the complexity of searchingkviearners at each round of boosting is
greatly reduced. The risk is defined as

Yjens lxi — x|
L2 jenw lIxi = %512

where NV and NV are the set of predefined number of nearest neighboss of the opposite
class and the same classxf(See Figure 3). The weak-learner weighis, k = 1, ..., K are then
found to maximisel(H + «y:hy) by a line search. Following the AnyBoost method [8], we set th
sample weights as the derivative of the cost function widipeet to the classifier score. For the cost
functionJ = log [, P(x;)¥: (1 — P(x;))~%), wherey; € {0,1} is the label ofi-th sample, the
weight of k-th classifier ovei-th sample is updated by
aJ yi — P(xi)

= = - Pr(x;). 5

M)~ Py ) ®)
See Figure 4 for the pseudocode of the proposed method.

R(x;) = exp{— } 4)

W

3.1 Data clustering

We propose a new data clustering method which assigns aveosémplex; to a classifier (or
cluster) that has the higheBt, (x;).

The sample weight ok-th classifier in (5) is determined by the joint probabiliB(x) and the
probability of k-th classifierP;(x). For a negative clasg{ = 0), the weights only depend on the
probability of k-th classifier. The classifier gives high weights to the negatamples that are mis-
classified by itself, independently of other classifiers. &positive class, high weights are assigned
to the samples that are misclassified jointly (i.e. the kfrtin (5)) but may be correctly classified
by thek-th classifier at next rounds (i.e. high.(x)). That is, classifiers concentrate on samples in
their expertise through the rounds of boosting. This camtezpreted as data partitioning.

3.2 Examples

Figure 3 (right) illustrates the concept of the MCBoost aiipon. The method iterates two main
steps: learning weak-learners and updating sample weitdses in the figure represent the sam-



classifier1 classifier2 classifier3
13

weaklearner weight
°
H

02
EE] 0 20 10 20 30
boosting round

Figure 5: Example of learning on XOR classification problem. For a given random initialisation (three
different color blobs in the left), the method learns three classifiers thalyméettle into desired clusters and
decision boundaries (middle). The weak-learner weights (right) shewdhvergence.

ples that are correctly classified by weak-learners at etagh $he sample weighting (5) is repre-
sented by data re-allocation. Assume that a positive cissdmples of three target clusters denoted
by A, B andC. Samples of more than two target clusters are initiallygresil to every classifier.
Weak-learners are found to classify dominant samples (lettier) in each classifier (step 1). Clas-
sifiers then re-assign samples according to their expggisp 2): Sample€’ that are misclassified
by all are given more importance (bold letter). Samphare moved to the third classifier as the
expert onB. The first classifier learns next weak-learners for clasgifgampleC’ while the second
and third classifiers focus on samplésand B respectively (step 3). Similarly, sampldsC are
moved into the respective most experts (step 4) and allloesied samples are correctly classified
by weak-learners (step 5).

We present an example of XOR classification problems (Sear&ig). The positive class (circle)
comprising the three sub-clusters and the negative classg(cin background make the XOR con-
figuration. Any single or double boosting classifiers, tfieme cannot successfully dichotomise the
classes. We exploit vertical or horizontal lines as weak+ers and set the number of classifi&rs
to be three. We performed random partitioning of positivagias (shown in the left by three differ-
ent color blobs) for initialising the sample weights. Theafidecision boundaries and the tracks of
data cluster centres of the three boosting classifiers arersim the middle. Despite the mixed-up
initialisation, the method learns the three classifiers tizely settle into the target clusters after a
bit of jittering in the first few rounds. The weak-learner giais (in the right) show the convergence
of the three classifiers. Note that the method does not exgigidistance information between input
data points, by which conventional clustering methods gaaeently yield the same data clusters
in this example. As exemplified in Figure 2, obtaining desidata clusters by conventional ways
are, however, difficult in practice. The proposed methodkwevell with random initialisations and
desirably exhibits quicker convergence when a betteiiigttion is given.

3.3 Discussion on mixture of experts and future work

The existing local optimisation method, MoE, suffers frdme fibsence of a good initialisation so-
lution, but has nice properties once a good initialisatigists. We have implemented MoE in the
Anyboost framework. The sample probability in MoE is

P(x;) = 1/(1+exp(—= Y Qx(x:) - Hy(xi)))

k

whereQy (x;) is the responsibility ok-th classifier ovel;. Various clustering methods can define
the functionQ (x;). By taking the derivative of the cost function, the sampléglveof k-th classi-
fier is given asui; = (v;: — P(x:)) - Qx(x;). An EM-like algorithm iterates each round of boosting
and the update ap,.(x;). Dynamic selection of local experts helps time-efficieassification as it
does not use all experts.

Useful future studies on the MCBoost method include develemt of a method to automatically
determinek, the number of classifiers. At the moment, we first try a lakgand decide the right

number as the number of visually heterogeneous clusteagnalot (See Section 4). A post-corrective
step of initial weak-learners would be useful for more effiticlassification. When the classifiers
start from wrong initial clusters and oscillate betweerstdus until settling down, some initial weak-
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Figure 6:Perceptual clusters of pedestrian and face image€lusters are found to maximise discrimination
power of pedestrian and face images from random images by simple fesiiales.
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learners are wrong and others may be wasted to make up forrtregwnes. Once the classifiers
find right clusters, they exhibit convergence by decreafiegveak-learner weights.

4 Experiments

We performed experiments using a set of INRIA pedestriaa {lld] and PIE face data [9]. The
INRIA set contains 618 pedestrian images as a positive alad2436 random images as a negative
class in training and 589 pedestrian and 9030 random imagtssiing. The pedestrian images
show wide-variations in background, human pose and shalmbes and illuminations (Figure 6).
The PIE data set involves 900 face images as a positive @8spgfsons, 9 poses and 5 lighting
conditions) and 2436 random images as a negative classnmtgaand 900 face and 12180 random
images in testing. The 9 poses are distributed form left lerodi right profile of face, and the 5
lighting conditions make sharp changes on face appearatgosvn in Figure 6. Some facial parts
are not visible depending on both pose and illumination. iddlhges are cropped and resized into
24x 24 pixel images. A total number of 21780 simple rectangléuies (as shown in Figure 1) were
exploited.

MCBoost learning was performed with the initial weightsttivere obtained by the k-means clus-
tering method. Avoiding the case that any of the k-meanstelsigs too small (or zero) in size
has helped quick convergence in the proposed method. Wéesegtortion of high risk data as
20% of total samples for speeding up. The number of classifiessseaaskK € {2,3,4,5} and
K € {3,5,7,9} forthe INRIA and PIE data set respectively. For all casesreslassifier converged
within 50 boosting rounds.

Figure 6 shows the cluster centers obtained by the proposétboh The object images were parti-
tioned intoK clusters (or classifiers) by assigning them to the classfierhas the highegg, (x).
For the given pedestrian images, the first three clustereidok unique and the last two are rather
redundant. The three pedestrian clusters obtained argvietuThey emphasise the direction of
intensity changes at contours of the human body as discaiimin cues of pedestrian images from
random images. It is interesting to see distinction of upgrat lower body in the second cluster,
which may be due to different clothes. For the PIE data setpftitained face clusters reflect both
pose and illumination changes, which is somewhat diffefimb our initial expectation of getting
purely pose-wise clusters as the case in Figure 1. Thistieshowever, also reasonable when con-
sidering the strong illumination conditions that causedsindang of face parts. For example, frontal
faces whose right-half side is not visible by the lightingieat share any features with those having
left-half side not visible. Certain profile faces ratherrghmore facial features (e.g. one eye, eye
brow and a half mouth) with the half-shadowed frontal fageisitly making a cluster. All 9 face
clusters seem to capture unique characteristics of tharfzages.

We have also evaluated the proposed method in terms of fatasisin accuracy. Figure 7 shows
false-negative and false-positive curves of MCBoost metined AdaBoost method [7]. We set all
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Figure 7:ROC curves for the pedestrian data (top four) and face data (btiom four). MCBoost signif-
icantly outperformed AdaBoost method for both data sets and differeteclusmbersi. MCBoost is also
much superior to AdaBoost method learnt with manual pose label (boityt).

conditions (e.g. number of weak-learners) equivalent ith boethods. The k-means clustering
method was applied to positive samples. Boosting classifiere individually learnt by the positive
samples of each cluster and all negative samples in AdaBoetstod. The clusters obtained by the
k-means method were exploited as the initialisation in M@&anethod. For the PIE data set, we
also performed data partitioning by the manual pose labélearnt boosting classifiers separately
for each pose in AdaBoost method. For both pedestrian ared daperiments and all different
number of classifier&’, MCBoost significantly outperformed AdaBoost method by ifiigdoptimal
data clusters and associated feature sets. Our methoa isnalsh superior to the Adaboost learnt
with manual pose labels (bottom right).

In the AdaBoost method, increasing number
of clusters deteriorated the accuracy for the
pedestrian data, whereas it increased the per-
formance for the face data. This may be
explained by the number of meaningful data
clusters. We observed in Figure 6 that there
are only three heterogenous pedestrian clusters
while there are more than nine face clusters. In
general, a smaller number of positive samples
in each classifier (i.e. a largéf) causes per-  Figure 8:Example pedestrian detection result.
formance degradation, if it is not counteracted

by finding meaningful clusters. We deduce, by a similar reat the performance of our method
was not much boosted when the number of classifiers was seudalthough it tended to gradually
improve the accuracy for both data sets).

Figure 8 shows an example pedestrian detection result.nBaathe example image yields a total
number of 172,277 image patches to classify. Our methodrréh@ seconds by non-optimised
Matlab codes in a 3GHz CPU PC.

5 Conclusions

We have introduced a discriminative co-clustering probédrimages and visual features and have
proposed a method of multiple classifier boosting called M@&. It simultaneously learns image
clusters and boosting classifiers, each of which has espeoth an image cluster. The method
works well with either random initialisation or initialisan by conventional unsupervised clustering



methods. We have shown in the experiments that the propostrtbthyields perceptual co-clusters
of images and features. In object detection tasks, it sianifly outperforms two conventional
designs that individually learn multiple boosting clagsHiby the clusters obtained by the k-means
clustering method and pose-labels.

We will apply MCBoost to various other co-clustering prabkin the future. Some useful studies
on MCBoost method have also been discussed in Section 3.8iibg with a more exhaustive
training set would improve the performance of the methodbiject detection tasks.
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