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Abstract—Image classification is an important task in com-
puter vision as it plays a major role in content-based image
retrieval. For an image classification system that uses the Bag-
of-Words model representation, visual codebook is an essential
part. Randomized forest (RF) as a tree-structure discriminative
codebook has been proven highly time-efficient for real-world
applications, by utilizing the image class labels which the detected
features are associated with (i.e. weakly supervised learning).
However, the RF codebook can be degraded if the image class
labels are poorly labeled. In this paper, we tackle this image class
label problem by proposing a feedback mechanism from the topic
model. This statistical model can hypothesize the ‘correct’ labels
for images, to enhance the effectiveness of the RF codebook.
Besides, the feedback mechanism employs a joint image-patch
(i-Pat) level information in predicting the ‘correct’ labels, which
is in contrast to the state-of-the-art RF learning. Experiments on
both the 15-Scene and C-Pascal datasets had shown that the
proposed method outperforms existing methods by a margin.
Besides, even with limited labeled training images, the proposed
solution still able to achieve comparable accuracy compared to
the fully labeled training data algorithm.

I. INTRODUCTION

Image classification from the natural images has received
wide attention from the computer vision communities due to its
usefulness in content-based image retrieval, video surveillance,
robot localization and image understanding. Though successful
algorithms have been proposed, this is still a daunting task
with the presence of intra-class variation, background clutter,
occlusion and changes of pose.

Recently, Bag-of-words (BoW) model has been a popular
choice in the image classification task [2]–[8]. Amongst these
works, [6], [7] had employed the random forest (RF) as the
visual codebook. RF codebook utilizes the available image
class labels that are associated with the extracted features
during learning. As a result, the RF codebook will be more
discriminative compare to the conventional k-means codebook
[2], [3], [5]. However, such an advantage is heavily dependent
on the number of accurate image class labels. As an example
in Figure 1(a), from the human perspective point of view, one
will most likely classify the image as a ‘human face’ class as
our visual cognitive tends to focus on the dominated human
face, and neglect the background (we will not treat this as
a ’book’ class, although there are books at the background).
However, Figure 1(b) reflects how a machine learns. In weakly
supervised settings, the machine will extract image patches

(a) From human visual perspective, it is intuitive to label this
as ‘human face’ class.

(b) It is clear that not all the image patches have the ‘human
face’ characteristics (the blue region is the correct patches).
However, some background patches (red region) are still
associated as ‘human face’ class in weakly supervised setting,
which is not correct and hence degrades the codebook learning
performance.

Fig. 1: Image vs. patches learning: how human and machine
learn over images? (image from Caltech-256 Faces class [1])

from the original image source (in here, we employ dense
sampling as an example), and will associate all the extracted
patches to the corresponding image class label (In this case,
‘human face’ class). With this, the machine will also include
the set of wrongly-labeled image patches (patches from the
background) during training and therefore degrades the RF
codebook performance.

In this paper, we propose a feedback mechanism namely
the joint image-patch level (joint i-Pat) feedback mech-
anism to overcome the aforementioned problem. With this
strategy, we can estimate the soft class labels to each patch
using the topic model. That is, the soft class labels give a
probability value to each patch, describing how true that patch
is belongs to the image class label as shown in Figure 2. Then,
a new RF codebook can be learned from the soft class labels,
enhancing the RF codebook representation. This is followed
by a new pLSA topic model that is learned from the new RF
codebook. This iterative learning process will continue until



Fig. 2: An overview to the proposed Joint i-Pat feedback framework. We first learn a RF codebook from available training
images. After that, we treat RF leafnodes as codebook and learn the topic model (pLSA - probabilistic latent semantic analysis,
for our framework) from the BoW representation based on the learned RF codebook. To perform the joint i-Pat feedback, soft
class labels for the training images are estimated from the image and patch level information from both pLSA (p(z|w, d)) and
RF (p(w|x)), respectively. The blue dotted line indicates patch information from the RF and pLSA, while dark orange dotted
line indicates the image level information from pLSA. For soft class label, we can notice that the red patches (correct image
patch) have high object (O) score and low background (B) score. This indicates that the particular patch have high probability
to be object patch. This O score are B score are resultant from unsupervised learning of pLSA, which gathers latent topics
information and use a novel Dominant Topic (DT ) representation to deduce the O score and B score. In contrast, green patches
(the background patches) will have high B score and low O score. Then, a new RF codebook is learned and follows by, a new
pLSA topic model is learned from the new RF codebook. This iterative learning process will continued until convergence.

the convergence criteria is met. Empirically, we achieve state-
of-the-art performance in 2 public datasets (15-Scene and C-
Pascal), even in situations that only limited training images are
available.

In summary, our contributions are 2-fold: 1) we proposed
joint i-Pat feedback framework in image classification. Such
a framework includes the benefit of image level information,
estimated from the topic model as well as the patch level
information from both the RF codebook and topic model,
respectively. This is in contrary to [6] which focused in
learning the patches information and [7] that learns the image
level concepts; and 2) we introduced the soft class labels in
the joint i-Pat feedback framework to strengthen the codebook
learning quality rather than conventional image class labels.

This paper is arranged as follows: Section II discusses the
recent development in related topics including the codebook
learning and topic model. Section III details the joint i-Pat
framework. We show our results in Section IV. Finally, discus-
sions and conclusion are drawn in Section V-VI, respectively.

II. RELATED WORK

Visual codebook learning is an essential pipeline in the bag-
of-words (BoW) representation. In order to find the optimal
codewords for selected problems, unsupervised methods such
as k-means [2] and kd-tree [9] had been applied to the
extracted features. However, recent research work had been
focused on learning the visual codebook with labeled images,
in order to have a better discrimination on the codebook
learning e.g. random forest sparse coding [10], supervised
sparse coding [11], and ERC forest [6]). These methods extract
image patches from the whole images as the input training
data, which can be categorized as the patch-level learning.

On the other hand, Krapac et al. [7] employed the image-
level approach by minimizing image classification loss on the
validation set during the RF splits. This is in order to directly
maximize the image classification performance. In our method,
we adopt the RF as codebook because of its discriminativeness
advantage, and we tackle the RF disadvantage using the soft
class label learning.

Topic model is first introduced to deal with the natural
language problem by Thomas Hofmann [12] via Probabilistic
Latent Semantic Analysis (pLSA) model. It has been widely
studied in recent computer vision area, especially in scene
understanding and object categorization [3]. Using the topic
model, we can estimate image topics (or middle-level infor-
mation) that reside in all image classes and find optimum
combination of it to suggest the image level scores. Also,
we can predict joint image-patch level scores by employing
image-word-specific topic distribution p(z|w, d) and codeword
probability p(w|x). In here, we choose to apply pLSA model
[12] rather than other variants because of its simplicity (e.g.
compared to Latent Dirichlet Allocation (LDA) model [13] and
Hierarchical Dirichlet Process (HDP) model [14] which need
to learn dirichlet prior). Note that our aim of this paper is to
show the advantages of the joint i-Pat feedback mechanism for
image classification.

III. METHODOLOGY

The proposed method consists of three steps as illustrated
in Figure 2. First, we initiate the model by learning the image
patches, that are associated with the image class labels, using
the RF. Treating the RF leafnodes as codewords, we build the
BoW representation from the RF codebook. Secondly, we learn
the pLSA topic model from the RF codebook and estimate the



soft class labels on the training images patches for joint i-Pat
feedback. Following this, a new RF codebook is learned from
the patch features associated with soft class labels, and follow
by a new pLSA is learned from the refined RF codebook,
forming a feedback cycle. The joint i-Pat framework is iterated
until the convergence criteria is satisfied. Finally, we perform
the classification with the pLSA generated from the enhanced
RF codebook via prediction score.

We will first discuss the initial RF codebook and topic
model learning, following by the process to generate the
soft class labels. Then, we will detail the joint-iPat feedback
mechanism and the convergence criteria. Finally, we will
explain the inference method of the proposed framework.

A. Initial RF codebook generation and pLSA learning

RF is an ensemble of the random decision trees which
applied a bagging strategy on different decision trees. RF pro-
vides a very fast way of codebook learning and quantization.
Moreover, when the image class labels are available, it can
act as a good discriminative codebook. Each random decision
tree is constructed using a random subset of the training data
with replacement. The labeled training image I ′node at specific
node, consist of xi and li where xi is the feature vectors of
image patches from training images, and li are corresponding
image class labels. These feature vectors are recursively split
into left and right subsets, I ′left and I ′right, according to a set
of thresholds T and a split function f , as

I ′left = {xi ∈ I ′node|f(xi) < Tt}, I ′right = I ′node \ I ′left. (1)

Since this is a randomized decision tree, we generated a
random subset of the features for split function f and T . The
splits that maximize the expected information gain 4ENT
are selected. Specifically, at each split node:

4ENT = ENT (I ′node)−
∑

i=left,right

| I ′i |
| I ′node |

ENT (I ′i),

(2)
ENT (I ′i) = p(li) (log2 p(li)), (3)

where ENT (I ′i) is the Shannon Entropy of the probability
class histogram p(li). The leafnodes of all the trees in the
forest will serves as a codebook. Then, the feature vectors are
quantized by the trained RF codebook to form the BoW rep-
resentation. The pLSA model is learned from the BoW whose
element BoW (wj , dn) stores the number of occurrences of a
word wj (i.e. codeword) in document dn (i.e. image), where j
is number of codewords and n is the number of images. The
topics zk of the image are selected accordingly to p(zk|dn),
where k is number of topics. The parameters are estimated by
maximizing the log-likelihood algorithm:

p(dn, wj) = p(dn)

K∑
k=1

p(wj |zk)p(zk|dn), (4)

and we estimate the image-specific topic distribution P (zk|dn)
by

p(wj |dn) =
K∑

k=1

p(wj |zk)p(zk|dn), (5)

B. Soft class labels

The soft class labels for each image patches are derived
from the topic distributions that we learned from the pLSA.
We calculate the image-codeword-specific topic distribution
p(zk|wj , dn) as:

p(zk|wj , dn) =
p(wj |zk)p(zk|dn)∑K
k=1 p(wj |zk)p(zk|dn)

. (6)

In here, we assume that the topic distribution has a close
relationship to the class-specific topic distribution, and hence
we can estimate the distribution from the available labeled
training images. Concretely, we define a Dominant Topic (DT )
representation for each image class, i.e. there will be some
topics that is representative to some classes. A mapping from
the class-specific topic distribution p(zk|dm) to the image-
specific p(cm|d) class distribution can be derived as:

p(zk|dm) =

∑
n⊂m p(zk|dn)∑M
m=1 p(zk|dm)

, (7)

p(DTm|dn) =
∑K

k=1 p(zk|dm)∑M
m=1 p(DTm|dn)

, (8)

where p(zk|dm) > 1/K. Assume that DTm summarizes image
topics zk that significantly represent class m, its probability
distribution p(DTm|dn) will be similar to p(cm|dn):

p(cm|dn) ≈ p(DTm|dn). (9)

However, every single patch has different probability values
based on the relationship between codewords wj and patch
feature vectors xi. During the quantization process, xi is
represented by J codewords, where J = R × E while R
is the number of trees used in codebook learning and E is
the leafnodes per tree. Conventionally, each codeword gives a
class probability based on the patches p(cm|xi). However, by
treating each codeword as an individual ‘class’, we can rewrite
as

p(wj |xi) =
1

J

R∑
r=1

p(wre|xi). (10)

The image-patch-specific topic distributions p(zk|xi, dn)
for each patches are then determined by summing the cor-
responding codeword probabilities of the particular feature
vectors:

p(zk|xi, dn) =
p(zk|wj , dn)p(wj |xi)∑K
k=1 p(zk|wj , dn)p(wj |xi)

. (11)

We estimate the soft class labels for each patches,
p(cm|xi, dn) by utilizing both the p(zk|xi, dn) and the
p(DTm|dn) . Since p(DTm|dn) is an image level distribution,
we can define p(DTm|xi, dn) from it, where each xi that
belongs to similar dn will have similar p(DT |dn) distribution.
Therefore:

p(cm|xi, dn) ≈
p(DTm|xi, dn)∑M

m=1 p(DTm|xi, dn)
. (12)



Fig. 3: Semi-supervised learning framework for joint i-Pat
feedback mechanism.

These soft class labels will be used in generating a new RF
codebook.

C. Feedback mechanism

The feedback mechanism continues by learning a new RF
codebook using the soft class labels learned. Since the image
class labels changes from discrete values to continuous, we
refine the spliting criterion - Shannon Entropy ENT in Eq. 3.
We compute the probability class histogram p(li)i−Pat as:

p(li)i−Pat =
p(cm|xi, dn)∑M

m=1 p(cm|xi, dn)
, (13)

where the histogram can be seen as the sum of the soft class
labels of the images. Other setting of the RF codebook will
remain the same. After that, a new pLSA model is learned from
the new BoW based on the new RF codebook. We believe that
by virtue of this close loop, the discriminative power of RF
codebooks and pLSA model can be improved. Convergence
is achieved when the pLSA model stop improving (in terms
of classification performance). That is, we set a stopping
condition where if the training results drop in a new iteration,
we assume that the pLSA model has reached its convergence.
Empirically, the feedback framework will converge within 2
to 5 iterations.

D. Classification

Given a testing image dtest, we estimate the image-specific
topic distribution p(zk|dtest):

p(wj |dtest) =
K∑

k=1

p(wj |zk)p(zk|dtest). (14)

The dominant topics DT corresponding to class labels are
obtained by Eq. 8. The soft class label p(cm|dtest) of test
image dtest are estimated:

p(cm|dtest) ≈ p(DTm|dtest). (15)

Algorithm 1 summarizes the proposed method. A set of class-
specific thresholds, thresh are identified from the training
images p(cm|dtrain). p(cm|dtest) that passes the respective
thresh will be classify as positive image.

Algorithm 1 Joint Image-Patch Level (Joint i-Pat) feedback

Require: A set of training images
Ensure: All parameters are set: number of trees, R, number

of leafnodes, E, and number of topics, k
1. Initial learning of the RF codebook
2. Initial training of the pLSA using the BoW histogram
based on the initial RF codebook as in step 1.
repeat

a. Infer soft class labels to associate with training image
patches.
b. Re-learn RF codebook using the training image patches
associated with corresponding soft class labels
c. Re-train the pLSA

until Classification result on training images are reduced
3.Classification using the final re-trained pLSA.

E. Semi-supervised Learning

Conventionally, RF cannot deal with semi-supervised set-
ting since it needs image class labels for each features as-
sociated with it to train. Inspired by [15], we discover a
possibility to extend the joint i-Pat feedback framework in
semi-supervised learning (SSL) manner. Refer to Figure 3, for
a set of training images that contains labeled and unlabeled
images, we first learn the initial RF codebook and pLSA model
from the labeled training images only. Secondly, we predict the
soft class labels for both the labeled and unlabeled training
images. Then, the rest of the process is same as to the original
framework. With this, we can make use of the largely available
unlabeled training data to further strengthen the RF codebook
discriminative power.

IV. EXPERIMENTS

We use the 15-Scene and C-Pascal dataset to test the
difference of the proposed framework to the state-of-the-art
methods. 15-Scene dataset [5] consists of both indoor and
outdoor scene images. Each class consist of 200-400 images
and 300 × 250 pixels respectively. We choose this dataset
because this dataset has been extensively used in the research
community in the image classification task that involve scene,
which make it an important benchmark. C-Pascal dataset [16]
is created from the bounding box annotations of the PASCAL
VOC challenge 2008 training set [17] to extract the objects
such that classification can be evaluated in a multi-class setting.
This dataset contains 4450 images from 20 object classes but
with varying object poses and background clutter.

For both datasets, we perform dense SIFT on patch size
= 8 and step size = 4. We choose a small patch size and
step size due to the low resolution constraint on some of the
images in the C-Pascal dataset. Besides, for any image that
have edge > 300 pixel, it will be resized to a maximum of
300 pixel and retain the aspect ratio. For the RF codebook
settings, we use 10 random trees with 100 leafnodes, resulting
in 1000 codeword histogram. Then, we use 20 topics during
the pLSA learning. We use 100 training images for 15-Scene,
and 30 training images for C-Pascal.

Experimental result: For the 15-Scene dataset results that
depicted in Table I, it is noticed that our proposed method out-
perform current state-of-the-art method - ScSPM [19] which



TABLE I: Accuracy on 15-Scene Dataset compared to state-
of-the-art methods

Labeled training image 10 100
Total training image 100

ERC Forest [6] 49.95 73.84
Tree Quantizer [7] 48.14 83.60
Proposed method 77.38 82.48

KSPM [5] 81.40
KC [18] 76.67

ScSPM [19] 80.28
ScSPM, base 1024, no SPM 63.13

ScSPM, base 64, 3 level SPM 71.99

TABLE II: Accuracy on C-Pascal dataset compared to state-
of-the-art methods

Algorithm Accuracy
multiple features + rank [20] 45.50

LP+ITML (best case) [21] (5 training) 36.40
NN with spDSIFT [22] 32.90

RALF [23] 37.30
GP-OA-Var [24] (area under AUC) 76.26

Proposed method (30 training, 5 labeled) 75.81
Proposed method (30 training, 30 labeled) 85.29

is an unsupervised solution by 2.2%. However, one must
note that the ScSPM that employed in this case is in the
optimum settings as published in their paper. To have a fair
and better understanding of the performance of ScSPM and
our proposed solution, we reimplemented the ScSPM into
two different settings: (ScSPMa) 1024 bases with no Spatial
Pyramid Matching (SPM), and (ScSPMb) 64 bases with 3-
level SPM, which both settings will result in 1000 bases or
codewords to compare with our system with 1000 codewords.
We outperform the ScSPMa and ScSPMb by 19.35% and
10.49%, respectively which is a considerable improvement.
Compare to the ERC-forest [6], we also perform well as we
have 8.64% improvement. This has shown that the ERC forest
is affected by the wrongly labeled image patches while our
proposed approach didnt. Although we are slightly weaker
to Tree Quantizer [7] (a very small margin of 1.12%), in
our experiment, we used a simple dense SIFT feature than
their work, which sampled features on original image as well
as four down-sampled version on the images. Also, in their
work, they used 15 (class) × 10 (trees) × 100 (leafnodes) for
their codebook representation in 15-Scene dataset experiment,
which a lot larger to our current settings.

For the C-Pascal dataset results show in Table II, our pro-
posed method yet again outperform the conventional solutions
[20]–[24]. Even with less labeled training images (5 labeled
in 30 training images), we still able to achieve comparable
performance (rank 2 overall) with an accuracy of 75.81%. This
has further justified the effectiveness of the proposed method.

Convergence (comparison to conventional pLSA). Based on
Table III, we treat each stage of the joint i-Pat feedback as an
independent pLSA classifier, and report the results in iteration
basis. Results on first iteration for both methods tend to be
very close to the final converged results. This is expected
because the first iterations and the following iterations have

TABLE III: Convergence analysis on 15-Scene and C-Pascal
Dataset in different training settings.

Dataset labeled Before 1st convergence best
feedback iteration result

15 Scene 10 76.19 76.63 77.38 77.38
15 Scene 100 76.10 81.45 82.48 82.48
CPascal 5 72.51 75.56 75.81 75.81
CPascal 30 67.81 85.20 84.77 85.20
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Fig. 4: Analysis on C-Pascal Dataset, specifically in conver-
gence in semi-supervised learning (SSL) settings. init: Result
by initial pLSA; 1st fb: Result after first feedback; conv: Result
after convergence; best: Best result achieved out of all iteration.

the same amount of features and soft class labels to learn
the RF codebook, comparing to initial pLSA model which is
build based on a limited labeled training images. Therefore the
improvement before feedback and after first iteration is more
significant. Also, the final convergence result doesn’t necessary
to be the best classification model, e.g. in Figure 4, the C-
Pascal experiment that have 10, 20 and 30 labeled training
images are fall in this category.

Semi-supervised learning: In Table I, for 15-Scene dataset,
our SSL settings (10% of the total training image as labeled
training image) have comparable result to the state-of-the-art
solutions despite limited labeled training images are available.
red Note that our proposed method in SSL is very similar to
unsupervised learning using ScSPM, by a different of 10%
labeled training images. Our proposed method are weaker to
both the KSPM and ScSPM for 4.02% and 2.90% respec-
tively, but we have an improvement of 14.25% and 5.39%
compare to ScSPMa and ScSPMb respectively. This shows the
flexibility and effectiveness of our proposed method working
in the SSL environment. In the meantime, the ERC forest
and Tree Quantizer methods degrade drastically to around
50% accuracy in this SSL environment, because both methods
can only utilized the labeled training images during the RF
learning, and the unlabeled training images cant be employed.
Therefore, the number of images used during the RF learning
is very limited, and results in poor performance. Bear in
mind that our classifier is based on the pLSA topic model,
which is a generative approach. Therefore, we believe that the
classification result should be able to further increased if a
hybrid approach as in [25] is applied.

The C-Pascal dataset result is explained in Figure 4, where
the experiments is conducted with number of labeled training
images increase gradually by 5. The experiment clearly shows
the improvement from the feedback mechanism even from



(a) CALsuburb (b) Inside city (c) MIT tall building

Fig. 5: p(c|x, d) visualization (right column) on selected im-
ages (left column) in 15-Scene dataset.

(a) Car (b) Cat (c) Potted plant

Fig. 6: p(c|x, d) visualization (right column) on selected im-
ages (left column) in C-Pascal dataset.

1st iteration, for various settings. Also, fully labeled settings
doesn’t necessary to be the best result because there will be
more background noise that is wrongly labeled in the initial
learning, which weaken the initial RF codebook. With consid-
erable unlabeled training images (in the experiment, roughly
half of from the total training images), the RF codebook is
allowed for room of improvement with the Joint i-Pat feedback
mechanism and able to achieve better results.

V. DISCUSSION

For the proposed method to work effectively, the soft
class labels play a major role. In here, we visualize the
image-patch-specific class distribution p(c|x, d) to see the
effects of soft class labels during the codebook updating
process. Visualization of p(c|x, d) for 15-Scene and C-Pascal
dataset are illustrated in Figure 5-6 respectively. We show that
p(c|x, d) represent a rough silhouette to the original image
itself. Besides, the high probability area (white area) normally
reflects the edges of the image, which reflects the characteristic
of the images especially objects in the image. p(c|x, d) can be
considered as a noise reduction in BoW learning technique.
By assigning background patches as low probability area, we
lower the chance that background patches are used in RF node
splitting, to reduce RF degradation.

Computational cost of the proposed system are highly
dependent on the number of iterations as one iterations will
consist of RF codebook learning and pLSA learning. However,
it is scalable to large dataset, as for each iterations, we just
repeat the learning process by using soft class labels instead
of ordinary class labels.

VI. CONCLUSION

We proposed a joint image-patch level (joint i-Pat) feed-
back framework which utilizes discriminative RF codebook
learning and generative classifier learning in classification task.
To achieve that, we estimate soft class labels for training
images from initial pLSA model and initial RF codebook to
update the RF codebook iteratively until convergence reached.
We show that this framework can be applied in SSL application

as well. The future work is to investigate different feature
extraction parameter effect (e.g. patch size and step size) on
soft class labels learning. Besides, we would like to find a
more robust way for convergence decision.
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