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Abstract

This paper tackles the novel challenging problem of 3D
object phenotype recognition from a single 2D silhouette.
To bridge the large pose (articulation or deformation) and
camera viewpoint changes between the gallery images and
query image, we propose a novel probabilistic inference al-
gorithm based on 3D shape priors. Our approach combines
both generative and discriminative learning. We use la-
tent probabilistic generative models to capture 3D shape
and pose variations from a set of 3D mesh models. Based
on these 3D shape priors, we generate a large number of
projections for different phenotype classes, poses, and cam-
era viewpoints, and implement Random Forests to ef�ciently
solve the shape and pose inference problems. By model
selection in terms of the silhouette coherency between the
query and the projections of 3D shapes synthesized using
the galleries, we achieve the phenotype recognition resultas
well as a fast approximate 3D reconstruction of the query.
To verify the ef�cacy of the proposed approach, we present
new datasets which contain over 500 images of various hu-
man and shark phenotypes and motions. The experimental
results clearly show the bene�ts of using the 3D priors in
the proposed method over previous 2D-based methods.

1. Introduction

Recognizing 3D objects from one or more 2D views is a
fundamental problem in computer vision. There have been
increasing attempts to solve this problem, which embraces a
number of research issues such as view-invariant object in-
stance/category recognition [20, 21, 25, 35, 47, 49, 52, 24],
object pose recognition [2, 9, 17, 22, 27, 32, 37, 43,
46, 44, 48, 50], object viewpoint classi�cation [15], gait
recognition [28], face recognition across pose and expres-
sion [30, 53], etc. However, to our best knowledge, the
problem of classifying generic object phenotypes (shapes),
under 3D object pose and camera view-point changes, has
not been tackled. The successful solutions would be widely
useful for potential applications such as automatic human
body shape monitoring, in relation with recent food recog-

nition studies in computer vision, and wild animal (such as
horse and �sh) tracking, etc.

In this work, we address a novel challenging task of
shape recognition, i.e. classifying phenotypes of the 3D
object from asingle2D silhouette input (see Fig.1 for an
example of human body shapes). Here, phenotypes are re-
ferred to the intrinsic shape differences across given human
instances, e.g., fat vs thin, tall vs short, muscular vs unmus-
cular. The major dif�culty of this problem is that the query
silhouette can undergo large pose and camera view-point
changes. Traditional 2D-based approaches fail to capture
the intrinsic shape (dis-)similarity between the query and
gallery silhouettes. In view of this problem, we propose a
novel generative+discriminative solution by using 3D shape
priors, i.e. the knowledge learnt from previously-seen 3D
shapes. Our approach is motivated by the observation that
humans can perceive the 3D shape of an object from a sin-
gle image, provided that they have seen similar 3D shapes.
Once 3D shapes are estimated from single images (single
view reconstruction), camera view-point/pose invariant ob-
ject recognition is achievable.

The problem we tackle, therefore, conjoins single view
reconstruction with 3D object recognition. The novelties
and main contributions lie in:

� Going beyond pose recognition: object pose recog-
nition and tracking by 3D template models has been
widely studied [22, 32, 37, 40, 43]. This work attempts
to capture more subtle 3D shape variations on the top
of the estimated pose and camera view-points.

� Recognising generic deformable objects: our frame-
work does not require strong class-speci�c knowledge
such as human body skeleton consisting of a number
of joints in [3, 12, 16, 42] or face shape models de-
�ned by manual control points [53], and is thus ap-
plicable to different object categories. Previous stud-
ies [21, 25, 34, 49, 52, 24] are limited to rigid object
classes.

� Exploiting shape cues (vs textures): whereas a ma-
jority of existing 3D object recognition work relies
on image appearance or textures (e.g., af�ne invariant
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Figure 1.Phenotype recognition problem. Given a silhouette
gallery of different body shapes, the goal is to classify thebody
shape of a query silhouette in the presence of pose and/or camera
viewpoint changes.

patches [35, 47]), we exploit shape cues, silhouettes,
which are useful when there is no overlap in views be-
tween a model and a query, or no consistent textures
e.g. changing clothes etc.

� Transferring 3D models to images: we learn from 3D
models and perform recognition of images, which con-
trasts previous work matching only among 3D models
[8] or 2D images.

1.1. Related Work

There has been a growing interest for view-invariant ob-
ject instance or category recognition [35, 47]. Their build-
ing blocks are often the image patches that are invariant up
to af�ne transformations, and the structural relations among
the patches are then captured. Texture-based object recog-
nition is useful manywhere though, it becomes inherently
ambiguous when there are no consistent textures between a
model and a query: no overlapping views, changing clothes,
or textureless objects.

Shape (silhouette or edge map) is another useful cue
which has been long explored for object recognition, how-
ever most relevant studies have been done in 2D [11, 39,
45]. They do not explicitly capture 3D shapes, poses, cam-
era view-points of objects, relying on a large number of
model images. It basically fails when query images exhibit
considerably different poses or view-points from those of
models. On the other hand, studies on 2D shape representa-
tion [14, 26] have tackled the problem of recognizing artic-
ulated objects, but they model the articulation on a 2D basis
and have dif�culties dealing with self-occlusions and large
3D camera pose changes.

3D templates and shape models have been widely incor-

porated into object pose recognition problems for hands [37,
46] or human bodies [17, 27, 32, 37, 43, 48, 50], but their
models are designed for pose, often without consideration
of shape variations. Whereas they do not explicitly handle
the classi�cation problem of phenotypes or 3D shapes, we
capture and discriminate 3D shape variations in an invariant
manner to object poses and camera view-points.

Single view reconstruction is an active research �eld.
Just to name a few, Prasad et al. [29] reconstructed curved
objects from wireframes; Han et al. [18] applied Bayesian
reconstruction for polyhedral objects, trees, or grass. Black
et al. [4, 3, 12, 16, 42] estimated detailed human body
shapes using parametric morphable models. In [42], a dis-
criminative+generative method was proposed to help ini-
tialise the body parameters for reconstruction. In [3],
B�alan and Black have touched the phenotype classi�ca-
tion/recognition problem in a preliminary way. They tested
their shape estimation approach on a binary-class gender
classi�cation task and they have achieved good accuracy.
In [16], shading cues are incorporated for single view re-
construction. Although they showed detailed shape recov-
ery, it does not seem easy, in general, to solve the regression
problem of the huge parametric space of joint angles, and to
extend the approach to model other object categories. Chen
et al. [7] tackled more general deformable object categories.
The shape and pose generators need only a small number of
latent variables to estimate, yet are able to capture complex
3D object shapes.

Another close work to ours is [34], where an uni�ed
method to segment, infer 3D shapes and recognise object
categories is proposed. They use a crude voxel represen-
tation for the shape prior and apply it to object categories
such as cups, mugs, plates, etc. However, they are limited
to simple and rigid objects. In [25, 49], 3D geometrical
models are learnt to detect objects in images, but similarly,
no articulation or deformation is considered.

The following branches of studies have conceptual dif-
ferences from our work. Studies for human gait recog-
nition [28] perform human identi�cation from video se-
quences (instead of images) in a �xed camera view-point.
Image-based face recognition across pose is an intensively
studied area [30, 53]. Representative methods exploit active
face shape models for view-point invariance [53] or expres-
sion invariance [31], however, these models are speci�cally
designed for faces, involving many control points manually
de�ned. Studies for 3D object retrieval are quite different,
as they match one 3D model with another.

2. Phenotype Recognition and Shape Recon-
struction Based on Classi�ers

In the paper, the phenotype recognition problem is for-
mulated as follows. We assume that a set of 2D phenotype
galleriesG = f SG

c gN c
c=1 of Nc instances, which contains one
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Figure 2. The graphical model for the 3D shape recognition and reconstruction problem (left). Example trees of Random Forests for the
phenotypeF S (middle) and poseF A (right): they show the class histogram at each split node andthe phenotype/pose class at each leaf
node. Note that the trees shown here are grown tiny for the visualisation purpose.

sample silhouetteSG
c for each phenotype classc (see Fig.1

for examples), is provided as the reference, and all the sil-
houettes inGare in a common canonical pose. We hope to
�nd the phenotype labelc� 2 f 1; 2; � � � ; Ncg for a query
silhouetteSq in an arbitrary pose and camera viewpoint.

To handle the dif�culties caused by poses and camera
view changes, our approach learns 3D shape priorsM on
available 3D data. Gaussian Process latent variable models
(GPLVMs) [23] have been shown powerful in solving the
problems of human pose estimation [2, 10, 38, 50, 51] and
3D shape modeling [7, 6, 36, 37]. We implement the frame-
work in [7], in which two GPLVMs, the shape generator
M S and the pose generatorM A , are learned separately,
and then jointly used to synthesize new 3D shapes. Each
3D shapeV is then parametrized by a phenotype latent vari-
ablexS and a pose latent variablexA , as Fig.2(left) shows.
Please refer to [7] for details about the model training.

Given a silhouette imageSq , we infer its embedding
pose latent parametersxA , and the camera parameters
so that we can neutralise the in�uence of pose and camera
viewpoint changes in the recognition. Inferring these pa-
rameters can be done through the optimisation process of
the generative model in [7]. However, the back-projection
from 2D to 3D is usually multi-modal, and this results in a
non-convex objective function with multiple local optima,
which is usually dif�cult to solve.

To avoid such a non-convex optimisation, some previous
studies have tried combining generative and discriminative
approaches. This strategy has been exploited for articulated
pose recognition and tracking [9, 33, 44] or 3D shape recov-
ery [37, 42]. Here, we introduce a discriminative approach
based on random forest (RF) classi�ers for fast hypothesiz-
ing shape (phenotype), pose, and camera parameters. Ran-
dom forests are shown to have exceptional performance in
solving pose recognition and multi-modal mapping prob-
lems [32, 40]. In our approach, three RFs, the phenotype
classi�er FS , the pose classi�erFA , and the camera classi-
�er FC, are learned based on a large number of silhouettes

synthesized byM S andM A with different camera param-
eters (see Section3 for details of learning these RFs).FS

predicts the shape parameterxS from a gallery silhouette
SG

c , while FA andFC predict the pose and camera param-
etersf xA ;  g from the query silhouetteSq . The silhouette
Sq or SG

c is passed down each tree in the forest, and the leaf
nodes of these trees quickly provide multiple candidates of
its corresponding shape, pose or camera parameters. (see
Fig. 2 for examples).

Finally, the 3D shapeV of the querySq is recovered by
the estimated pose latent valuesxA of Sq and the shape la-
tent valuesxS of each gallery instanceSG

c (see Section2.2),
and the recognition is achieved by a model-selection, i.e.,
assigning the phenotype classc� that yields the best match-
ing between the query silhouetteSq and the projection of
the reconstructed 3D shapeV in camera viewpoint (see
Section2.1).

2.1. Phenotype Recognition

Phenotype recognition is formulated as a model-
selection problem. Based on the graphical model in
Fig. 2(left), we infer the labelc� of the query instance
by maximizing a posteriori probability given pre-learned
shape priorsM = fM S ; M A g and classi�ersF =
fF S ; FA ; FCg as

P(c� jSq ; ~Sq ; f SG
c gN c

c=1 ; M ; F )

/ P(~Sq jc� ; Sq ; f SG
c gN c

c=1 ; M ; F )P(c� )

= P(c� )
Z

x S ;x A ;
P(xS jSG

c � ; FS )P(xA jSq ; FA )

P( jSq ; FC)P(~Sq jxS ; xA ; ; M )dx Sdx A d; (1)

where~Sq denotes the mirror node ofSq . Here, we assume
that the class priorP(c� ) is subject to a uniform distribu-
tion, i.e.,P(c� ) = 1 =Nc.

In (1), the �rst three terms describe the prior of shape
and pose latent parameters(xS ; xA ) and camera parame-
ters from the random forest classi�ersFS , FA , andFC,



respectively. The shape classi�erFS predictsNS candidate
phenotype shapesf xc �

S;i g
N S
i =1 for the canonical posed gallery

silhouetteSG
c � of each classc� ; while the pose classi�erFA

and the camera viewpoint classi�erFC predictNA candi-
date posesf xA ;j g

N A
j =1 andNK candidate camera parameters

f  k gN K
k=1 for the query silhouette inputSq . Mathematically,

these three terms can be written as delta impulses.

P(xS jSG
c � ; FS ) =

N SX

i =1

hc�

S;i � (xS � xc �

S;i ); (2)

P(xA jSq ; FA ) =
N AX

j =1

hA;j � (xA � xA ;j ); (3)

P( jSq ; FC) =
N KX

k=1

hC;k � ( �  k ); (4)

wherehc�

S;i , hA;j , andhC;k are class histogram values voted
by every tree inFS , FA , andFC, respectively, and they
satisfy

P N S
i =1 hS;i =

P N A
j =1 hA;j =

P N K
k=1 hC;k = 1 .1

In the last term of the model, each combination of shape
and pose latent parameters(xS ; xA ), and the camera pose
are veri�ed by the silhouette likelihood of the query image
~Sq . It can be formulated as the following equation [7].

P(~Sq jxS ; xA ; ; M )

�
1

ZS

q
det

�
I + 1

� 2
s
� W

� e� OCM
�

� W ;~Sq
�

=2� 2
s ; (5)

whereW � N (� W ; � W ) is referred to the projected sil-
houette of the latent 3D shapeV in the camera viewpoint
 and it is de�ned as a multi-variate Gaussian distribution;
� W and� W are the mean and the covariance matrix ofW ,
respectively2; � 2

s andZS are normalisation factors. We use
oriented Chamfer matching (OCM) distance [46] to mea-
sure the similarity between the mean projected silhouette
� W and the silhouette of the query image~Sq . Detailed for-
mulations of OCM are described in Section4.2. Given all
the probability terms, the �nal posterior probability in (1)
can be computed as:

P(c� jSq ; ~Sq ; f SG
c gN c

c=1 ; M ; F )

�
1

NC

N SX

i =1

N AX

j =1

N KX

k=1

hc�

S;i hA;j hC;k P(~Sq jxc �

S;i ; xA ;j ;  k ; M ):

(6)

1For the purpose of robustness and acceleration, we discard all the
small-weighted candidates under the thresholdshc�

S;i < 0:05, hA;j <
0:05, andhC;k < 0:05 in the experiments.

2Please refer to equations (12) and (15) in [7] for the details forms of
� W and� W .

2.2. Single View 3D Shape Reconstruction

As a by-product, our framework can also be used to
quickly predict an approximate 3D shapeV from the query
silhouetteSq . This shape reconstruction problem can be
formulated probabilistically as follows:

P(V jSq ; f SG
c gN c

c=1 ; M ; F )

=
N cX

c=1

� Z

x S ;x A

P(V ; xS ; xA ; cjSq ; SG
c ; M ; F )dx Sdx A

�

=
N cX

c=1

P(c)
� Z

x S ;x A

P(xS jSG
c ; FS )P(xA jSq ; FA )

P(V jxS ; xA ; M )dx Sdx A

�

�
1

NC

N cX

c=1

N SX

i =1

N AX

j =1

hc�

S;i hA;j N
�
V j� V ; � V

�
: (7)

where� V = � V (xA ;j ; xc
S;i ) and � V = � V (xA ;j ; xc

S;i )
are referred to the mean and variance function of the 3D
shape distributionV , respectively, and their detailed formu-
lations can be found in [7]. Compared with the optimisation
approach in [7], the classi�ers-based approach in the paper
provides fairly good qualitative results and is much more
ef�cient in computation time (See Section4.4).

3. Training Random Forest Classi�ers

In order to learn the random forest classi�ersF =
fF S ; FA ; FCg, we use the shape and pose generators
fM S ; M A g to synthesize a large number of silhouettes
with different latent parametersf xS ; xA g and camera view-
points .

The shape classi�erFS , an ensemble of randomised de-
cision trees, is used to encode the phenotype information
of each gallery silhouetteSG

c in the canonical pose. It is
trained on a datasetD1 consisting of canonical-posed sil-
houettes ofN = 50 phenotype samplesf xS;i gN

i =1 which
are uniformly sampled from the latent space of the shape
generatorM S . For each sample of phenotype labeli 2
f 1; 2; � � � ; N g, we generateR = 250 sample silhouettes
from the 3D mesh model with minor pose perturbations and
camera parameter changes, e.g., slight camera rotations and
focal length changes. AllN � R = 12500 binary images
are aligned and normalised to have the same size.

On the other hand, the pose classi�erFA and the cam-
era classi�erFC are used to predict the pose and camera
viewpoint of the query silhouetteSq . We train them on an-
other datasetD2 with large pose and camera viewpoint vari-
ations as well as phenotype variations. We uniformly sam-
ple M = 50 pose samplesf xA ;j gM

j =1 from the latent space
of the pose generatorM A , andK = 50 camera viewpoint
samplesf  k gK

k=1 uniformly distributed in the 3D space, and



generate 3D shapes along with the sameN = 50 pheno-
type samplesf xS;i gN

i =1 used in the shape classi�er training
stage. This generatesN � M � K = 125; 000silhouette in-
stances, and each of them is labeled by(i; j; k ) representing
phenotype, pose and camera viewpoint, respectively. An
ensemble of decision trees forFA andFC are grown by the
pose labelj and camera labelk, respectively3. See below
for the random features and split criteria used.

3.1. Error Tolerant Features

We generateD = 12000 random rectangle pairs
f (Rd;1; Rd;2)gD

d=1 with arbitrary centroid locations
(ld ;1 ; ld ;2), heightshd, and widthswd (see Fig3(a) for
example). For each binary silhouette imageI for training,
the difference of mean image intensity values within each
pair of rectangles is then computed as the split feature
f d = 1

wd hd

� P
l 2 R d; 1

I (l ) �
P

l 02 R d; 2
I (l0)

�
. In this way,

each training instanceI is hence converted to a 12000-D
feature vectorf = [ f d]Dd=1 . These features are ef�cient to
compute and capture spatial context [41].

When training the phenotype classi�erFS , we also in-
troduce a feature-correction scheme. SinceFS is trained
on synthetic silhouettes generated by the shape priorsM ,
which are clean and unclothed, its discriminative power is
usually reduced when working on noisy gallery silhouettes
segmented from real images. To model the systematic er-
rors between the synthetic and real silhouettes, we use the
approach in [7] to create an extra silhouette set which con-
sists ofNe pairs of real and synthetic silhouettes describ-
ing different clothing and segmentation errors and capturing
different phenotypes. We then extract the features from im-
ages using the same set of random rectangle pairs. Here,~f e

m
(m = 1 ; 2; � � � ; Ne) denotes the features extracted from the
real silhouette images, andf e

m denotes those from the cor-
responding synthetic silhouette images. The feature errors
can be thus modeled byem = ~f e

m � f e
m .

To compensate for the systematic silhouette errors when
trainingFS , we correct all those synthetic training data with
these error vectorsf em gN e

m =1 . For each feature vectorf of
instanceI , we �nd its T nearest neighbor synthetic features
in E (we chooseT = 3 ), and use the corresponding error
vectorset to correctf as~f t = et + f , (t = 1 ; 2; � � � ; T ).
Finally, allN � R� T corrected features vectors~f t of N � R
training instances are used as training samples forFS .

3.2. SimilarityAware Criteria Functions

When training a random forest classi�erF � 2
fF S ; FA ; FCg, the instanceI is pushed through each tree
in F � starting from the root node. At each split node, the
error-corrected random feature~f = [ ~f d]Dd=1 is evaluated for

3In our implementation, we set the tree numberNT of all the forests
F S , F A , andF C to be 30, and the maximum depthdmax of a single tree
to be 30.
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Figure 3. (a) Random paired-rectangle features. (b) A3 � 3 ex-
ample of dissimilarity weighting matrix� for human phenotype
classes.

every single training instance (see Section3.1). Then, based
on the result of the binary test~f d > � th , I is sent to the
left or the right child node. The feature dimension indexd
and the split value� th at a split noden are chosen to max-
imize � C(n) = C(n) � j n L jC (n L )+ jn R jC (n R )

jn L j + jn R j , whereC
measures the distribution purity of the node, andnL and
nR denote the left and right children of noden. For the cri-
teria functionC, we generalise Gibbs and Martin's diversity
index [13] and take the class similarity into account:

C(n) = pT
n �p n ; (8)

wherepn = [ pn; 1; pn; 2; � � � ; pn;N B ] is referred to the class
distribution of noden; NB denotes the number of class la-
bels of the random forestF � ; the weighting matrix� =
f � ij = 1 � e�k �V i ; j k2 =� 2

gN B � N B , which is de�ned by the
average spatial mesh distancek�V i ;j k2 between classesi
andj (see Fig.3(b) for an example of phenotype classes).
When� = 1 � I , equation (8) is reduced to the standard
diversity indexC(n) = 1 �

P N B
c=1 p2

n;c . Intuitively, a lower
misclassi�cation penalty is assigned between two visually
similar classes in (8). The experiment shows that such a
similarity weighting scheme notably improves the recogni-
tion rate (see Section4.3).

4. Experimental Results

4.1. Datasets

We have veri�ed the ef�cacy of our approach on two
shape categories: humans and sharks. For the human data,
we train the shape modelM S on the CAESAR database,
which contains over 2000 different body shapes of North
American and European adults in a common standing pose,
and train the pose modelM A on 42 walking and jumping-
jack sequences in CMU Mocap dataset. For the shark
data, we learnM S on a shape data set that contains eleven
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Figure 4. Examples of images and their corresponding silhouettes
in our phenotype-class recognition datasets. Row 1,2: dataset
structure: one canonical-posed instance and several arbitrary-
posed instances; Row 3: human jumping-jack motion; Row 4:
human walking; Row 5: shark underwater swimming motion.

3D shark models of different shark species available from
the Internet [19] , and M A on an animatable 3D MEX
shark model to generate an 11-frame sequence of shark tail-
waving motion [7]. The mesh resolutions are: 3678 ver-
tices/7356 faces for the human data, and 1840 vertices/3676
faces for shark data, respectively. We empirically set the la-
tent space dimension of the shape modelM S to be 6 for
human data and 3 for shark data, while for the pose model
M A , we set the latent dimension to be 2 for both, similarly
to [7].

As there is no suitable public datasets to evaluate the
proposed approach, we have collected two new silhouette
datasets which capture a wide span of phenotype, pose,
and camera viewpoint changes(see Fig.4 for examples).
Human motion datasetmainly captures two different hu-
man motions: walking (184 images of 16 human instances)
and jumping-jack motion (170 images of 13 human in-
stances). The images are cropped from video sequences on
YouTube and public available human motion datasets, e.g.,
HumanEva [43]. For each instance, a canonical standing
pose image is provided (see Fig.1 and Row 1, 2 of Fig.4).
All the instances are in tightly-�tting clothing.Shark mo-
tion dataset includes 168 images of 13 shark instances of
5 sub-species. These images are cropped from underwater
swimming sequences downloaded from Internet. For each
instance, a pro�le-view image is provided as the canonical-
pose gallery image.

The silhouettes are manually segmented from the images
and all of them are normalised by their height and resized to
the resolution121� 155. For both datasets,Ne = 20 addi-
tional images are collected for modeling the feature errors
(in Section3.1).

4.2. Comparative Methods

For the purpose of comparison, we also implemented
three state-of-the-art methods based on 2D shape match-
ing: 1) Shape contexts (SC) [1], 2) Inner-Distance Shape
Context (IDSC) [26], and 3) the oriented chamfer matching
(OCM) [46], and two methods using the 3D shape priors:
4) the single-view 3D shape reconstruction method by Mix-
ture of Experts [42] and 5) the RF implementation directly
using the shape class labels. Nearest Neighbor classi�ca-
tion is performed in terms of the similarity provided by the
compared methods.

Histogram of Shape Context (HoSC). Shape contexts
(SC) [5] are rich local shape-based histograms encoding
contour information and they have been widely used for
shape matching and pose recognition. Since SCs are de-
�ned locally on every single silhouette point, representing
the whole shape can be expensive. To reduce the dimen-
sionality of shape contexts, Agarwal and Triggs introduce
a bag-of-features scheme called histogram of shape con-
text (HoSC) [1] for human pose estimation. In HoSC, k-
means clustering is used to yield aL -dimensional code-
book of the cluster means (L = 100 in the paper), and all
its shape contexts are then softly binned to a quantizedL-
dimensional histograms. We implemented a 2D approach
HoSC-� 2, which compares the� 2-distances of HoSC fea-
tures extracted from the query and each gallery silhouette.
Inner-Distance Shape Context (IDSC). Recent research
on shape matching has addressed the problem of �nding
articulation invariant distance measurement for 2D shapes.
Among them, a representative recent work is Inner-Distance
Shape Context (IDSC) by Ling and Jacobs [26], which has
been proved successful in 2D shape classi�cation problems.
The authors' own code is used.
2D Oriented Chamfer matching (OCM). Chamfer match-
ing and its variants have been widely used for shape match-
ing and pose recognition.Among them, oriented Chamfer
matching has been proved to be an effective method for
shape-based template matching [46]. The query silhouette

Sq = f sq
k gN q

k=1 and gallery silhouettesSG
c = f sG

c;j g
N G

c
j =1

(c = 1 ; 2; � � � ; Nc), wheresq
k andsG

c;j denote edge points,

are divided intoNch orientation channels:f Sq
t gN ch

t =1 and
f SG

c;t gN ch
t =1 , respectively. In our implementation, we set

Nch = 8 . To minimise the allocation error of image edges
in orientation, an edge pointsG

c;j is assigned to both adjacent
channels when its orientation is around the border region.
The OCM distance betweenSG

c andSq is calculated as the
sum of independent chamfer distance with each indepen-
dent orientation channel, as the following equation shows:

OCM (SG
c ; Sq ) =

1
Nq

N chX

t =1

X

sG
c ; j 2 SG

c ; t

min
sq

k 2 Sq
t

ksq
k � sG

c;j k
2; (9)
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Figure 5. Phenotype recognition accuracy on human and sharkdatasets. (a) Comparison over 8 different approaches; (b) performance
under different maximum tree depthsdmax ; and (c) different tree numbersNT of the random forestsF S , F A , andF C.

Mixture of Experts for the shape reconstruction. We im-
plemented a 3D shape recognition approach, called HoSC-
MoE-Chamfer, based on the shape reconstruction frame-
work proposed in [42], in which mappings from HoSC fea-
tures to shape and pose parameters are learned using a Mix-
ture of Experts (MoE) model. In their work, weighted lin-
ear regressors are used as mixture components. We �x the
number of components to be 10 in our implementation. For
a fair comparison, the same training setsD1 and D2 and
shape priorsM are used, and the recognition is also based
on the OCM distance between the predicted shape and the
query silhouette.
Single Random Forest Shape Veri�cation. We also com-
pare our framework with a straightforward classi�cation ap-
proach based on a single shape random forest, in which
FS is directly learned on the large pose and camera view-
point variation datasetD2 according to the phenotype label
i (see Section3). For an arbitrary input silhouetteSq , in
the format of a binary image, we push it through each tree
T r (r = 1 ; 2; � � � ; NF ) starting at the root and apply the
corresponding sequence of binary test until it reaches the
leaf node, which stores the phenotype labeli r . the pheno-
type prediction from the forestFS is given by a histogram
hq = f hq;i gD

i =1 which summaries the phenotype vote from
each treeT r (r = 1 ; 2; � � � ; NF ). The phenotype similarity
between the query silhouetteSq and an gallery silhouette
SG

c (c = 1 ; 2; � � � ; NC ) can be measured by the� 2-distance
between their random forest prediction histogramshq and
hG

c = f hG
c;i g

D
i =1 as follows:

� 2(Sq ; SG
c ) =

DX

i =1

(hq;i � hG
c;i )

2

2(hq;i + hG
c;i )

: (10)

where�hq 1 = 2 =
P N

i =1 hq1= 2 ;i 1N is referred to a vector con-
sisting of the average bin value of the histogramhq 1 (hq 2 ).

4.3. Numerical Results of Phenotype Recognition

We perform cross validations by randomly selecting 5
different instances, where we use their canonical posed im-

ages as the galleries and any other poses as the query.

Fig. 5(a) provides the recognition rates of different ap-
proaches. In general, the 3D-based approaches (single RF,
HoSC-MoE-Chamfer and the proposed method G+D) out-
perform those 2D-based ones (OCM, HoSC-� 2, and IDSC)
in the phenotype recognition tasks. The best 2D shape mea-
surement IDSC achieves a close performance to that of 3D
approaches. This indicates the bene�t of using 3D shape
priors to handle pose deformations and camera viewpoint
changes. On the other hand, given the same training data,
our approach (G+D) performs best among three 3D ap-
proaches under all contexts. Compared to the single shape
RF, our framework that factorizes three types of variations
in the training stage, better captures subtle shape variations.
In most cases, object pose and camera viewpoint changes
are more dominant factors that affect the silhouette appear-
ance than phenotype variations, and hence they greatly dis-
tract the discriminative power of the single RF which is di-
rectly learnt on the mixed variation data setD2 with the
shape labels. Instead, we learn the phenotype classi�erFS

on a canonical-posed datasetD1, which does not include
large pose and camera viewpoint changes. For the pose and
camera classi�ers, we use the the mixed variation data set
D2 but with the pose and camera labels respectively. The
pose and camera parameters are much more reliably esti-
mated than the shape parameter for given the same training
data. The comparison between our approach and HoSC-
MoE-Chamfer shows that given the same training data, the
random forests and rectangle features we used also outper-
form the combination of MoE and HoSC features in the set-
ting of phenotype discrimination. This could partially be
owing to the feature selection process during the RF train-
ing stage and the scheme of generating multiple hypotheses
for a single input in the RF prediction stage.

We carried out more experiments to further understand
how the recognition performance can be affected by the
features and parameters of RFs, and the noise of input sil-
houettes. To evaluate the bene�t of using the feature cor-
rection (Section3.1) and similarity-based criteria function
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Figure 6. (a) A silhouette corrupted by random pepper and salt noise of different levels. (b) Phenotype recognition performance under
different noise levels.

(Section3.2), we implemented multiple variants of the pro-
posed approach (G+D): the framework without error mod-
eling (G+D-E), and the framework using standard diversity
index [13] as the criteria function instead (G+D-S). These
results are also presented in Fig.5. It shows that both
schemes help improve the recognition performance of our
approach to some extent in all three datasets. We then in-
vestigated the in�uence of random forests parameters max-
imum tree depthdmax and the tree numberNT of FS , FA ,
andFC. As shown in Fig.5(b) and5(c), the accuracy does
not vary much at over 25 depths, but increasing the number
of trees of each forest gradually improves the recognition
rate.

Finally, we checked the noise sensitivity of the proposed
phenotype recognition approach. In the experiment, all the
testing silhouettes are corrupted by random pepper and salt
noise of a set of levels: 0%, 1%, 2.5%, 5%, 7.5%, 10% (see
Fig.6(a)), and the algorithm (G+D) is then run on corrupted
silhouette. The recognition rates achieved at different noise
levels are given in Fig.6(b). We can observe that the recog-
nition performance degrades slowly when the noise level
is below5% and drops more rapidly when the noise level
reaches7:5%. This indicates a fairly good robustness when
some noise is present in the input silhouette. We think that
this robustness may come from the pair-wise rectangular
features we used, which smooth out the effect of noise to
some extent. We also �nd that the performance curves can
sometimes be non-monotonic, which is partially due to the
randomness of features and decision thresholds in those RF
classi�ers.

4.4. Approximate Single View Reconstruction

In our framework, these intermediate 3D shape candi-
datesV obtained during the recognition process can be

used for approximate 3D reconstruction from a single sil-
houette input, as mentioned in Section2.2. In Fig. 7, we
show some qualitative 3D outputs of different phenotypes
using our framework in contrast with those generated us-
ing the approach in [7]. In general, these highest-weight
shape candidates generated by random forest classi�ers of-
ten include meaningful shapes which can be used as fairly
good approximate reconstruction results, albeit relatively
lower silhouette coherency and less accurate pose estima-
tion. However, we also notice that some results may still
be in wrong phenotype (e.g., instance 5) or in a wrong pose
or camera viewpoint (e.g., instance 9). This is mainly due
to the silhouette ambiguity or a limitation on the discrimi-
native power of random forest classi�ers given our training
set. We also compute the running time of both approaches
under a 2.8GHz CPU. The average time for generating a 3D
shape using our new generative+discriminative framework
is less than 10 seconds using unoptimised Matlab codes,
while using the approach in [7] takes about 10 to 15 minutes
for generating 10 candidates. This improvement in compu-
tational ef�ciency owes much to using RFs for hypothesiz-
ing xS , xA , and , which greatly narrows down the search
space of the algorithm.

5. Conclusions

combines both generative and discriminative cues for
recognizing the phenotype class of an object from a sin-
gle silhouette input and reconstructing its approximate 3D
shape. We learn 3D probabilistic shape priors of the object
category by GPLVM to handle the dif�culties in the camera
viewpoint changes and pose deformation, and use random
forests for ef�cient inference of phenotype, pose, and cam-
era parameters. Experiments on human and shark silhou-
ettes have shown the advantage of our approach against both
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standard 2D-based methods and relevant 3D-based meth-
ods.

The present accuracy on the datasets we provide, espe-
cially on the shark dataset, is limited due to the descriptive
power of the shape and pose generators we used to synthe-
size silhouettes and insuf�cient number of 3D shapes and
motion data used for training. Using more extensive 3D
training data would improve the accuracy. Another major
problem which limits the application of the current frame-
work is in the requirement of silhouette segmentation. This
could be helped by e.g. Kinect camera which yields reliable
foreground-background segmentation in real time. Also, as
our future work, we plan to build up a larger-scale pheno-
type recognition dataset of different categories of objects
and make it available to public. It would help evaluate our
approach and do comparative studies.
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