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Abstract nition studies in computer vision, and wild animal (such as
horse and sh) tracking, etc.

This paper tackles the novel challenging problem of 3D In this work, we address a novel challenging task of
object phenotype recognition from a single 2D silhouette. shape recognition, i.e. classifying phenotypes of the 3D
To bridge the large pose (articulation or deformation) and object from asingle 2D silhouette input (see Figd. for an
camera viewpoint changes between the gallery images ancexample of human body shapes). Here, phenotypes are re-
guery image, we propose a novel probabilistic inference al- ferred to the intrinsic shape differences across given muma
gorithm based on 3D shape priors. Our approach combinesinstances, e.g., fat vs thin, tall vs short, muscular vs ts¥mu
both generative and discriminative learning. We use la- cular. The major dif culty of this problem is that the query
tent probabilistic generative models to capture 3D shape silhouette can undergo large pose and camera view-point
and pose variations from a set of 3D mesh models. Basedchanges. Traditional 2D-based approaches fail to capture
on these 3D shape priors, we generate a large number ofthe intrinsic shape (dis-)similarity between the query and
projections for different phenotype classes, poses, and ca gallery silhouettes. In view of this problem, we propose a
era viewpoints, and implement Random Forests to ef ciently novel generative+discriminative solution by using 3D shap
solve the shape and pose inference problems. By modepriors, i.e. the knowledge learnt from previously-seen 3D
selection in terms of the silhouette coherency between theshapes. Our approach is motivated by the observation that
qguery and the projections of 3D shapes synthesized usinghumans can perceive the 3D shape of an object from a sin-
the galleries, we achieve the phenotype recognition result  gle image, provided that they have seen similar 3D shapes.
well as a fast approximate 3D reconstruction of the query. Once 3D shapes are estimated from single images (single

To verify the ef cacy of the proposed approach, we present view reconstruction), camera view-point/pose invaridmnt o
new datasets which contain over 500 images of various hu-ject recognition is achievable.

man and shark phenotypes and motions. The experimental

The problem we tackle, therefore, conjoins single view

results clearly show the bene ts of using the 3D priors in reconstruction with 3D object recognition. The novelties

the proposed method over previous 2D-based methods.

1. Introduction

Recognizing 3D objects from one or more 2D views is a
fundamental problem in computer vision. There have been
increasing attempts to solve this problem, which embraces a
number of research issues such as view-invariant object in-
stance/category recognitiof(], 21, 25, 35, 47, 49, 52, 24],
object pose recognition2] 9, 17, 22, 27, 32, 37, 43
46, 44, 48, 50], object viewpoint classi cation 5], gait
recognition 28], face recognition across pose and expres-
sion [30, 53], etc. However, to our best knowledge, the
problem of classifying generic object phenotypes (shapes)
under 3D object pose and camera view-point changes, has
not been tackled. The successful solutions would be widely
useful for potential applications such as automatic human
body shape monitoring, in relation with recent food recog-

and main contributions lie in:

Going beyond pose recognition: object pose recog-
nition and tracking by 3D template models has been
widely studied P2, 32, 37, 40, 43]. This work attempts

to capture more subtle 3D shape variations on the top
of the estimated pose and camera view-points.
Recognising generic deformable objects: our frame-
work does not require strong class-speci ¢ knowledge
such as human body skeleton consisting of a number
of joints in [3, 12, 16, 47] or face shape models de-
ned by manual control pointsg3], and is thus ap-
plicable to different object categories. Previous stud-
ies [21, 25, 34, 49, 52, 24] are limited to rigid object
classes.

Exploiting shape cues (vs textures): whereas a ma-
jority of existing 3D object recognition work relies
on image appearance or textures (e.g., af ne invariant



porated into object pose recognition problems for hafids [
46] or human bodies17, 27, 32, 37, 43, 48, 50, but their
models are designed for pose, often without consideration
of shape variations. Whereas they do not explicitly handle
the classi cation problem of phenotypes or 3D shapes, we
capture and discriminate 3D shape variations in an invarian
manner to object poses and camera view-points.

Single view reconstruction is an active research eld.
Just to name a few, Prasad et al9[reconstructed curved
objects from wireframes; Han et allq] applied Bayesian
reconstruction for polyhedral objects, trees, or grasacBl
et al. 4, 3, 12, 16, 47] estimated detailed human body
shapes using parametric morphable models 4#j, [a dis-
criminative+generative method was proposed to help ini-
tialise the body parameters for reconstruction. &, [

Gallery Balan and Black have touched the phenotype classi ca-
Figure 1.Phenotype recognition problem. Given a silhouette  tjon/recognition problem in a preliminary way. They tested
gallery of different body shapes, the goal is to classifylioely  thejr shape estimation approach on a binary-class gender
shape of a query silhouette in the presence of pose and/®@ream  |5ss; cation task and they have achieved good accuracy.
viewpoint changes. In [16], shading cues are incorporated for single view re-
construction. Although they showed detailed shape recov-

patches 35, 47]), we exploit shape cues, silhouettes, €rY. itdoes notseem easy, in general, to solve the regressio
which are useful when there is no overlap in views be- Problem of the huge parametric space of joint angles, and to
tween a model and a query, or no consistent textures€xtend the approach to model other object categories. Chen
e.g. changing clothes etc. etal. [7] tackled more general deformable object categories.
Transferring 3D models to images: we learn from 3D The shapg and pose generators need only a small number of
models and perform recognition of images, which con- latent variables to estimate, yet are able to capture comple

trasts previous work matching only among 3D models 3D object shapes. _ _
[8] or 2D images. Another close work to ours is3fl], where an unied

method to segment, infer 3D shapes and recognise object
1.1. Related Work categories is proposed. They use a crude voxel represen-
tation for the shape prior and apply it to object categories

. There has been a growing mtgr_((e);ttsfor vu?rvxr/]-lr_\vgrl?(;\t Ob- 5iich as cups, mugs, plates, etc. However, they are limited
ject instance or category recogniticdg] 47]. Their build- to simple and rigid objects. In2f, 49, 3D geometrical

ing blocks are often the image patches that are invariant UPmodels are learnt to detect objects in images, but simjlarly
to af ne transformations, and the structural relations amo no articulation or deformation is considered
the patches are then captured. Texture-based object recog- The following branches of studies have conceptual dif-

nition is useful manywhere though, it becomes inherently ferences from our work. Studies for human gait recog-
ambiguous when there are no consistent textures between g0 [26] perform human identi cation from video se-
model and a query: no overlapping views, changing clothes,quences (instead of images) in a xed camera view-point.
or textureless objects.

Sh ilh d . h fl Image-based face recognition across pose is an intensively
ape (silhouette or edge map) is another useful Cuegy, jigq areadl, 53]. Representative methods exploit active

which has been long explored for object reco_gnition, how- face shape models for view-point invariansé]jor expres-
ZverTrEost drelevant slt_u_dlles have b;;” r(}done in 20) }9, sion invariance}1], however, these models are speci cally
3. They do not explicitly capture 3D shapes, poses, €aM- qesigned for faces, involving many control points manually

era vie_w-points of ObieCtS' r_elying on a Iar_ge number_o_f de ned. Studies for 3D object retrieval are quite different
model images. It basically fails when query images exhibit as they match one 3D model with another
considerably different poses or view-points from those of '

models. On the other hand, studies on 2D shape representgp . Phenotype Recognition and Shape Recon-

tion [14, 2_6] have tackled the problem_ of re_cognizing artic-_ struction Based on Classi ers

ulated objects, but they model the articulation on a 2D basis

and have dif culties dealing with self-occlusions and larg In the paper, the phenotype recognition problem is for-
3D camera pose changes. mulated as follows. We assume that a set of 2D phenotype

3D templates and shape models have been widely incor-galleriesG = f S& g’c\';l of N instances, which contains one
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Figure 2. The graphical model for the 3D shape recognitiahraconstruction problem (left). Example trees of Randomesis for the
phenotypeF s (middle) and posé& 4 (right): they show the class histogram at each split nodetl@ghenotype/pose class at each leaf
node. Note that the trees shown here are grown tiny for thealigation purpose.

sample silhouett&8 for each phenotype clasgsee Figl synthesized byl s andM » with different camera param-
for examples), is provided as the reference, and all the sil-eters (see Sectiol for details of learning these RFdj s
houettes inG are in a common canonical pose. We hope to predicts the shape parametey from a gallery silhouette
nd the phenotype labet 2 f 1;2; ;Ncg for a query S¢, while F5 andF ¢ predict the pose and camera param-
silhouetteSY in an arbitrary pose and camera viewpoint.  etersf x ; g from the query silhouettg89. The silhouette

To handle the dif culties caused by poses and camera SY or S¢ is passed down each tree in the forest, and the leaf
view changes, our approach learns 3D shape phbrsn nodes of these trees quickly provide multiple candidates of
available 3D data. Gaussian Process latent variable model§S corresponding shape, pose or camera parameters. (see
(GPLVMSs) [23] have been shown powerful in solving the Fig. 2 for examples).
problems of human pose estimatich .0, 38, 50, 51] and Finally, the 3D shap¥ of the queryS® is recovered by
3D shape modeling/[ 6, 36, 37]. We implement the frame- the estimated pose latent values of S9 and the shape la-
work in [7], in which two GPLVMs, the shape generator tentvaluess of each gallery instancg? (see Sectio@.2),
M s and the pose generatt A, are learned separately, and the recognition is achieved by a model-selection, i.e.,
and then jointly used to synthesize new 3D shapes. Eachssigning the phenotype classthat yields the best match-
3D shape/ is then parametrized by a phenotype latent vari- INg between the query silhouet& and the projection of
ablexs and a pose latent variabte , as Fig.2(left) shows.  the reconstructed 3D shape in camera viewpoint (see
Please refer to7] for details about the model training. Section2.1).

Given a silhouette imag&9, we infer its embedding  2.1. Phenotype Recognition
pose latent parameters, , and the camera parameters . )
so that we can neutralise the in uence of pose and camera - €notype recognition is formulated as a model-
viewpoint changes in the recognition. Inferring these pa- S€/€ction problem. — Based on the graphical model in
rameters can be done through the optimisation process of '9- 2(€ft), we infer the labelc of the query instance
the generative model iV However, the back-projection Y Maximizing a posteriori probability given pre-learned
from 2D to 3D is usually multi-modal, and this results in a shape priorsM = fM siM ag and classierskF =
non-convex objective function with multiple local optima, T s:FaiFcgas
which is usually dif cult to solve. P(c jS9; ;S8 ng\l:cl ‘M :F)

To avoid such a non-convex optimisation, some previous . eq-£aG Ne oag

. . . ) e | P(S%c ;S%:fS2 0. ;M F)P

studies have tried combining generative and discrimiegativ ( J% ¢ Ge=1 P)

approaches. This strategy has been exploited for artexilat =P(c) P(xsjSE ;Fs)P(xajSY;Fa)
pose recognition and tracking,[33, 44] or 3D shape recov- XsiXA
ery [37, 47]. Here, we introduce a discriminative approach P( jSY:FQ)P(S%xs:Xa; ; M)dxsdxad; (1)

based on random forest (RF) classi ers for fast hypothesiz-

ing shape (phenotype), pose, and camera parameters. RanvhereS? denotes the mirror node &. Here, we assume
dom forests are shown to have exceptional performance inthat the class prioP (c ) is subject to a uniform distribu-
solving pose recognition and multi-modal mapping prob- tion, i.e.,P(c ) = 1 =Nc.

lems [32, 40]. In our approach, three RFs, the phenotype In (1), the rst three terms describe the prior of shape
classi er Fg, the pose classi eF 5, and the camera classi- and pose latent parametdrss; X4 ) and camera parame-
er Fc¢, are learned based on a large number of silhouettesters from the random forest classi efSs, Fa, andFc,



respectively. The shape classi Ex predictsNs candidate ~ 2.2. Single View 3D Shape Reconstruction
phenotype shapéss giNzﬁ for the canonical posed gallery
silhouetteS of each class ; while the pose classi eF 5
and the camera viewpoint classi & ¢ predictN, candi-
date posefsx A jglNAl andNg candidate camera parameters

f kgk for the query silhouette inp@&Y. Mathematically,

As a by-product, our framework can also be used to
quickly predict an approximate 3D shagefrom the query
silhouetteSY. This shape reconstruction problem can be
formulated probabilistically as follows:

these three terms can be written as delta impulses. P(VjS%;fSgars M ;F)
Xe 4
. s = P(V;Xs;Xa;¢S%;S%:M ;F)dx sdxa
P(xsiSS;Fs)=  hg (xs x&); ) el XsiXa
i=1 e Z
XA = P(o P(xsjSS;Fs)P(xajS%;Fa)
P(xajS";Fa)= haj (Xa Xaj); 3) o=t XsiXa
j=1
K P(Vjxs;Xa; M )dxsdxa
1S4 = . :
P( jS%Fc) . he ( k) 4) L e X A |
o hgihaj N Vj vi v : )

. C _ L .
wherehg; , ha; , andhcy are class histogram values voted c=1 =1 j=1

by evepy | tree mFSPFA, and FCPrespectlver, and they where v = v (xa xS and v o= v (Xagixg)
satisfy 2§ hsi = 2 o 1 hay = 1 hex =11 are referred to the mean and variance function of the 3D
In the last term of the model, each comb|nat|on of shape shape distributiol , respectively, and their detailed formu-
and pose latent paramet¢xss; X » ), and the camerapose  |ations can be found ir7]. Compared with the optimisation
are veri ed by the silhouette likelihood of the query image approach in ], the classi ers-based approach in the paper
S9. It can be formulated as the following equatiof [ provides fairly good qualitative results and is much more
i ef cient in computation time (See Sectiaghd).
P(S%xs:Xa; ; M)
. 1 e OOM wist 21 (5 3. Training Random Forest Classi ers
Zs det |+ —1g w In order to learn the random forest classi eFs =
fF s;Fa;Fco, we use the shape and pose generators
whereW N ( w; w) isreferred to the projected sil- fM s;M 5 g to synthesize a large number of silhouettes
houette of the latent 3D shapé in the camera viewpoint  with different latent parametefs s ; x4 gand camera view-
and it is de ned as a multi-variate Gaussian distribution; points .

w and  are the mean and the covariance matri¥\bf The shape classi eF s, an ensemble of randomised de-
respectively; 2 andZs are normalisation factors. We use cision trees, is used to encode the phenotype information
oriented Chamfer matching (OCM) distanc&y to mea- of each gallery silhouett8S in the canonical pose. It is

sure the similarity between the mean projected silhouettetrained on a datasd; consisting of canonical-posed sil-
w and the silhouette of the query imag#. Detailed for- houettes oN = 50 phenotype samplefsxs:iglt; which

mulations of OCM are described in Sectiér?. Given all are uniformly sampled from the latent space of the shape
the probability terms, the nal posterior probability if)( generatoiM s. For each sample of phenotype lalbeR
can be computed as: f1,2; ;Ng, we generat®R = 250 sample silhouettes

from the 3D mesh model with minor pose perturbations and
camera parameter changes, e.g., slight camera rotatidns an

P(cjS%;s%:fSggly ;M ;F) focal length changes. AN R = 12500 binary images

1 Ms Ma X« are aligned and normalised to have the same size.
— hS;i haj hex P(S%ixS.iiXa i ks M ): On the other hand, the pose classifeg and the cam-
Nc i=1 j=1 k=1 era classi erF¢ are used to predict the pose and camera

(6) viewpoint of the query silhouett®9. We train them on an-
other datasdD, with large pose and camera viewpoint vari-
IFor the purpose of robustness and acceleration, we distiatea ations as well as phenotype variations. We uniformly sam-

small-weighted candidates under the threshdifls < 0:05, haj < — L qM
0:05, andhcy < 0:05 in the experiments. : pleM =50 pose samplefxa;jg=; from the latent space

2Please refer to equations (12) and (15)7hfpr the details forms of ~ Of the pose genera_t(M A, ade = 50. camera viewpoint
w and . samples gk, uniformly distributed in the 3D space, and




generate 3D shapes along with the safhe= 50 pheno-

type sample$xs.igl; used in the shape classi er training

stage. Thisgeneratts M K =125;000silhouette in-

stances, and each of them is labeledibjy k ) representing

phenotype, pose and camera viewpoint, respectively. An w
ensemble of decision trees féi, andF ¢ are grown by the h,
pose labej and camera labéd, respectively. See below

for the random features and split criteria used.

3.1. Error Tolerant Features

We generateD = 12000 random rectangle pairs
f(Rg.1;Ra;2)05-; with arbitrary centroid locations
(lg:1;14:2), heightshy, and widthswy (see Fig3(a) for b
example). For each binary silhouette imdg#or training, F(ia)ure 3. (@) Randf)n)1 aired-rectangle features. () A3 ex-
the difference of mean image intensity values within each 9 - (@) kandom paired g j

. . . ample of dissimilarity weighting matrix for human phenotype
pair of rect@ngles is then I§omputed as the split feature . qqes

- _1 ; :
fo = @amr 12rgs 1 () 102r,, | (19 - In this way,
each training instanck is hence converted to a 12000-D . o
feature vectof = [f4]2., . These features are efcientto €Very single training instance (see Sectol). Then, based

When training the phenotype classi &, we also in- left or the right child node. The feature dimension index
troduce a feature-correction scheme. Sifiegis trained ~ and the split valuey, ata _Spl_i(t:”Odm ar_?: chosen to max-

. . HS n ng )+ |n n
on synthetic silhouettes generated by the shape piors ~ imize  C(n) = C(n) (JnLL)JJ,inEi (=) whereC
which are clean and unclothed, its discriminative power is measures the distribution purity of the node, andand
usually reduced when working on noisy gallery silhouettes nr denote the left and right children of node For the cri-
segmented from real images. To model the systematic erteria functionC, we generalise Gibbs and Martin's diversity
rors between the synthetic and real silhouettes, we use théndex [L3] and take the class similarity into account:
approach in ] to create an extra silhouette set which con-
: i ic si : C(N)=py P n; 8)

sists of N pairs of real and synthetic silhouettes describ- nk m

ing different clothing and segmentation errors and capturi wherepn = [pn:1; P2, P, | iS referred to the class
different phenotypes. We then extract the features from im- yistribution of ﬁodé; Ng denotes the number of class la-
ages using the same set of random rectangle pairs. ffere, pels of the random forest - the weighting matrix =
(m=1;2; ;Ng) denotes the features extracted from the fo=1 ek V k= ng N, , which is de ned by the
real silhouette images, ariff denotes those from the cor- avérage spatial mesh distaBncb? /K2 between classés

responding synthetic silhouette images. The feature ®rror andj (see Fig:3(b) for an example of phenotype classes).

can be thus modeled B, = fy  fy. When = 1 |, equatiop8) is reduced to the standard
To compensate for the systematic silhouette errors Whendiversity indexC(n) = 1 5 p2... Intuitively, a lower
c=1 Fnic- ’

trainingFs, we correctz'aqllethose synthetic training datawith - g cjassi cation penalty is assigned between two visually
these error vectorken g2, . For each feature vectérof similar classes ing§). The experiment shows that such a

!nstancd ,we nd |t§ T nearest nelghborsynthetlc.features similarity weighting scheme notably improves the recogni-
in E (we choosel = 3), and use the corresponding error tion rate (see Sectiof.3).

vectorse; to correctf asf; = e + f, (t = 1,2 ;T).
Finally,allN R T corrected features vectdisof N R 4. Experimental Results
training instances are used as training sampleb §or

o o ) 4.1. Datasets
3.2. Similarity-Aware Criteria Functions )
We have veri ed the ef cacy of our approach on two

When training a random forest classieF 2 shape categories: humans and sharks. For the human data,
fF s;Fa;Fcg, the instancé is pushed through each tree e train the shape mod#l s on the CAESAR database,
in F starting from the root node. Aé each split node, the which contains over 2000 different body shapes of North
error-corrected random featufe= [ f4]g-, is evaluated for  American and European adults in a common standing pose,
3In our implementation, we set the tree number of all the forests and train the pos? mods » on 42 walking and jumping-
Fs.Fa,andFc to be 30, and the maximum depfhax of asingle tree  JACk sequences in CMU Mocap dataset. For .the shark
to be 30. data, we learM s on a shape data set that contains eleven




4.2. Comparative Methods

For the purpose of comparison, we also implemented
three state-of-the-art methods based on 2D shape match-
ing: 1) Shape contexts (SC)][ 2) Inner-Distance Shape
Context (IDSC) P€], and 3) the oriented chamfer matching
(OCM) [46], and two methods using the 3D shape priors:
4) the single-view 3D shape reconstruction method by Mix-
ture of Experts{7] and 5) the RF implementation directly
using the shape class labels. Nearest Neighbor classi ca-
tion is performed in terms of the similarity provided by the
compared methods.

Histogram of Shape Context (HoSC) Shape contexts
(SC) [5] are rich local shape-based histograms encoding
contour information and they have been widely used for
Figure 4. Examples of images and their corresponding sittes shape matching and pose recognition. Since SCs are de-
in our phenotype-class recognition datasets. Row 1,2:sdata ned locally on every single silhouette point, represegtin
structure: one canonical-posed instance and severakaasbit  the whole shape can be expensive. To reduce the dimen-
posed instances; Row 3: human jumping-jack motion; Row 4: sionality of shape contexts, Agarwal and Triggs introduce
human walking; Row 5: shark underwater swimming motion. a bag-of-features scheme called histogram of shape con-
text (HoSC) [I] for human pose estimation. In HoSC, k-

. . . means clustering is used to yieldLadimensional code-

3D shark models of different shark species available from book of the cluster meand (= 100 in the paper), and all

the Internet 9] , and M o on an animatable 3D MEX . : .
shark model to generate an 11-frame sequence of shark tail'—ts shape contexts are then softly binned to a quantized

waving motion []. The mesh resolutions are: 3678 ver dimensional histograms. We implemented a 2D approach
. : - 2 ; 2_di -
tices/7356 faces for the human data, and 1840 vertices/367 0SC- *, which compares the-distances of HOSC fea
faces for shark data, respectively. We empirically setahe | ures extracted from the query and each gallery silhouette.
tent space dimensi(;n of the shape made to be 6 for Inner-Distance Shape Context (IDSC) Recent research

human data and 3 for shark data, while for the pose modelon_Sha'o,e matchllng hf?‘s addressed the problem of nding
M A, we set the latent dimension to be 2 for both, similarly articulation invariant distance measurement for 2D shapes

to [7] Among them, a representative recent work is Inner-Distance
As. there is no suitable public datasets to evaluate theShape Context (IDSC) b_y Ling and Jacoﬁ_@][V\_/hich has

. been proved successful in 2D shape classi cation problems.
proposed approach, we have collected two new S|Ihouette_|_he authors' own code is used
datasets which capture a wide span of phenotype, poseZD Oriented Chamfermatching. (OCM). Chamfer match
and camera viewpoint changes(see Figor examples). ) : , ' )
Human motion datasetmainly captures two different hu- :23 zrr‘]‘(jj It;o\;aer?ggzgr?t/iir?iergg\ggd?Heﬁegézgfggrghgag;-
man motions: walking (184 images of 16 human mStances)matching has beer provéd 0 be an e’ffective method for

and jumping-jack motion (170 images of 13 human in- X .
stances). The images are cropped from video sequences onape-based template matching][ The query silhouette

; . . N . NS
YouTube and public available human motion datasets, e.g.S* = fsig. %, and gallery silhouetteS? = fsZ g/

HumanEva {3. For each instance, a canonical standing (c = 1;2;  ;Nc), wheres] andsf;j denote edge points,
pose image is provided (see Figand Row 1,2 of Fig4).  are divided intoN¢, orientation channelsf Sgls and
All the instances are in tightly- tting clothingShark mo- fSG, i, respectively. In our implementation, we set

tion datasetincludes 168 images of 13 shark instances of N, = 8. To minimise the allocation error of image edges

5 sub-species. These images are cropped from underwatep orientation, an edge poisg; is assigned to both adjacent

swimming sequences downloaded from Internet. For eachchannels when its orientation is around the border region.

instance, a pro le-view image is provided as the canonical- The OCM distance betweef andS® is calculated as the

pose gallery image. sum of independent chamfer distance with each indepen-
The silhouettes are manually segmented from the imagesdent orientation channel, as the following equation shows:

and all of them are normalised by their height and resized to

the resolutiorl21 155 For both dataset®, = 20 addi- 1 X X

tional images are collected for modeling the feature errorsOCM (S¢ ;S9) = N

(in Section3.1). 9t=1 52 258, K
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Figure 5. Phenotype recognition accuracy on human and sladsets. (a) Comparison over 8 different approaches;gtipnmnance
under different maximum tree deptlsax ; and (c) different tree numbeblér of the random forestB s, Fa , andFc.

Mixture of Experts for the shape reconstruction. We im- ages as the galleries and any other poses as the query.
plemented a 3D shape recognition approach, called HoSC- g 5(a) provides the recognition rates of different ap-
MoE-Chamfer, based on the shape reconstruction frameyrgaches. In general, the 3D-based approaches (single RF,
work proposed in47], in which mappings from HoSC fea-  455¢-MoE-Chamfer and the proposed method G+D) out-
tures to shape and pose parameters are learned using a Mi)b'erform those 2D-based ones (OCM, HoS&-and IDSC)

ture of Experts (MoE) model. In their work, weighted lin- i the phenotype recognition tasks. The best 2D shape mea-
ear regressors are used as mixture components. We X thes,rement IDSC achieves a close performance to that of 3D
num_berof components to be 10 in our implementation. Forapproaches. This indicates the bene t of using 3D shape
a fair comparison, the same training séts andDz and  priors to handle pose deformations and camera viewpoint
shape priord/ are used, and the recognition is also based changes. On the other hand, given the same training data,
on the QCM distance between the predicted shape and thg, approach (G+D) performs best among three 3D ap-
query silhouette. o proaches under all contexts. Compared to the single shape
Single Random Forest Shape Veri cation We also com-  Rg oyr framework that factorizes three types of variations
pare our framework WIT[h a straightforward classi catiorap jj the training stage, better captures subtle shape vamiti
proach based on a single shape random forest, in whichi, nost cases, object pose and camera viewpoint changes
Fs is directly learned on the large pose and camera view- 3re more dominant factors that affect the silhouette appear
point variation datasdd according to the phenotype label - gnce than phenotype variations, and hence they greatly dis-
| (see Sectior8). For an arbitrary input silnouett®?, in  yact the discriminative power of the single RF which is di-
the format of a binary image, we push it through each tree rectly |earnt on the mixed variation data $$ with the

Ty (r=1;2; ;Ng) starting at the root and apply the  gpape |abels. Instead, we learn the phenotype clasSiser
corresponding sequence of binary test until it reaches they, 5 canonical-posed datagt, which does not include
leaf node, which stores the phenotype labelthe pheno- |56 pose and camera viewpoint changes. For the pose and
type predlctéon from the forests is given by a histogram  :amera classi ers, we use the the mixed variation data set
hq = fhg;igiZ; which summaries the phenotype vote from bt with the pose and camera labels respectively. The

eachtredr (r =1;2,  ;Ng). The phenotype similarity  ose and camera parameters are much more reliably esti-
bgtween the query silhouet& and an gallery silhouette  mated than the shape parameter for given the same training
S¢ (c=1;2,  ;Nc) canbe measured by thé-distance  ata. The comparison between our approach and HoSC-
bgtweenGtheSr random forest prediction histogrargsand  \1oE-Chamfer shows that given the same training data, the
he = fheigi, as follows: random forests and rectangle features we used also outper-
% (h he Y2 form the combination of MoE and HoSC features in the set-
Z(Sq;Sf) - (Ng;i ci)” (10) ting of phenotype discrimination. This could partially be

- 2(hg; + hgi )’ owing to the feature selection process during the RF train-

P ing stage and the scheme of generating multiple hypotheses
wherehg,_, = iN:1 hg,_,:i In is referred to a vector con- for a single input in the RF prediction stage.
sisting of the average bin value of the histogriag (hg, ). We carried out more experiments to further understand
how the recognition performance can be affected by the
features and parameters of RFs, and the noise of input sil-
We perform cross validations by randomly selecting 5 houettes. To evaluate the bene t of using the feature cor-
different instances, where we use their canonical posed im-rection (Sectior8.1) and similarity-based criteria function

4.3. Numerical Results of Phenotype Recognition
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(Section3.2), we implemented multiple variants of the pro- used for approximate 3D reconstruction from a single sil-
posed approach (G+D): the framework without error mod- houette input, as mentioned in Secti®r2. In Fig. 7, we
eling (G+D-E), and the framework using standard diversity show some qualitative 3D outputs of different phenotypes
index [L3] as the criteria function instead (G+D-S). These using our framework in contrast with those generated us-
results are also presented in Fig. It shows that both  ing the approach in7]. In general, these highest-weight
schemes help improve the recognition performance of ourshape candidates generated by random forest classi ers of-
approach to some extent in all three datasets. We then inten include meaningful shapes which can be used as fairly
vestigated the in uence of random forests parameters max-good approximate reconstruction results, albeit relitive
imum tree deptltlhax and the tree numbéd+ of Fs, Fa, lower silhouette coherency and less accurate pose estima-
andFc. As shown in Fig5(b) and5(c), the accuracy does tion. However, we also notice that some results may still
not vary much at over 25 depths, but increasing the numberbe in wrong phenotype (e.qg., instance 5) or in a wrong pose
of trees of each forest gradually improves the recognition or camera viewpoint (e.g., instance 9). This is mainly due
rate. to the silhouette ambiguity or a limitation on the discrimi-

Finally, we checked the noise sensitivity of the proposed native power of random forest classi ers given our training
phenotype recognition approach. In the experiment, all theset. We also compute the running time of both approaches
testing silhouettes are corrupted by random pepper and saltinder a 2.8GHz CPU. The average time for generating a 3D
noise of a set of levels:9, 1%, 2.5%, 5%, 7.5%, 10% (see shape using our new generative+discriminative framework
Fig. 6(a)), and the algorithm (G+D) is then run on corrupted IS less than 10 seconds using unoptimised Matlab codes,
silhouette. The recognition rates achieved at differeigso ~ While using the approach inJtakes about 10 to 15 minutes
levels are given in Figs(b). We can observe that the recog- for generating 10 candidates. This improvementin compu-
nition performance degrades slowly when the noise level tational ef ciency owes much to using RFs for hypothesiz-
is below5% and drops more rapidly when the noise level ingXs, Xa, and , which greatly narrows down the search
reacheg:5%. This indicates a fairly good robustness when space of the algorithm.
some noise is present in the input silhouette. We think that
this robustness may come from the pair-wise rectangular5, Conclusions
features we used, which smooth out the effect of noise to
some extent. We also nd that the performance curves can  combines both generative and discriminative cues for
sometimes be non-monotonic, which is partially due to the "écognizing the phenotype class of an object from a sin-

randomness of features and decision thresholds in those REI€ silhouette input and reconstructing its approximate 3D
classi ers. shape. We learn 3D probabilistic shape priors of the object

category by GPLVM to handle the dif culties in the camera
viewpoint changes and pose deformation, and use random
forests for ef cient inference of phenotype, pose, and cam-
In our framework, these intermediate 3D shape candi- era parameters. Experiments on human and shark silhou-
datesV obtained during the recognition process can be ettes have shown the advantage of our approach against both

4.4. Approximate Single View Reconstruction
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Figure 7. Approximate single view reconstruction using shape candidates from the random forest classi ers. (a)tigpery images
and silhouettes; (b) the highest-weight 3D shape candidedenFs andF » for each query silhouette (in two different views); (c) rksu
generated by the approach iff [ in two different views).

standard 2D-based methods and relevant 3D-based meth{8] C. Cyr and B. Kimia. 3D object recognition using shape ikinity-

ods.

The present accuracy on the datasets we provide, espe-
cially on the shark dataset, is limited due to the descrptiv

El

power of the shape and pose generators we used to synthe-

size silhouettes and insuf cient number of 3D shapes and

motion data used for training. Using more extensive 3D [10]

training data would improve the accuracy. Another major
problem which limits the application of the current frame-

work is in the requirement of silhouette segmentation. This
could be helped by e.g. Kinect camera which yields reliable

11]

foreground-background segmentation in real time. Also, as(12]

our future work, we plan to build up a larger-scale pheno-
type recognition dataset of different categories of olgject [13
and make it available to public. It would help evaluate our

approach and do comparative studies.
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