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Abstract

In this paper we address the problem of classifying vector sets. We motivate
and introduce a novel method based on comparisons between correspond-
ing vector subspaces. In particular, there are two main areas of novelty:
(i) we extend the concept of principal angles between linear subspaces to
manifolds with arbitrary nonlinearities; (ii) it is demonstrated how boosting
can be used for application-optimal principal angle fusion. The strengths of
the proposed method are empirically demonstrated on the task of automatic
face recognition (AFR), in which it is shown to outperform state-of-the-art
methods in the literature.

1 Introduction
Many computer vision tasks can be cast as learning problems over vector sets. In ob-
ject recognition, for example, a set of vectors may represent a variation in an object’s
appearance – be it due to camera pose changes, non-rigid deformations or variation in
illumination conditions. The objective of this work is to classify a novel set of vectors to
one of the training classes, each also represented by a vector set.

Problem challenges Pattern variations with a class are usually complex and nonlinear
(see Figure 1 for example), often with greater intra then inter class differences, e.g. see [1].
This makes their modelling difficult, requiring models expressive enough to capture such
complex behaviour, yet simple enough to allow for efficient estimation in the presence
of missing data. The problem is further complicated by the sheer volume of data – prac-
tical limitations in terms of available storage space and time constraints on recognition
frequently demand compact models that can be rapidly matched.

1.1 Previous Work
Most of the previous work on matching vector or image sets exploits their semantics to
a certain degree, typically by modelling temporal coherence between consecutive vectors
i.e. by matching sequences. By their nature, these methods are of little relevance to the
work presented in this paper, so we do not address them here. Broadly speaking, in the
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Figure 1: Face vector sets: 10 samples of two typical face sets used to illustrate concepts pro-
posed in this paper (top) and the corresponding patterns in the 3D principal component subspaces
(bottom), estimated from data. The sets capture appearance changes of faces of two different indi-
viduals as they performed unconstrained head motion in front of a fixed camera. The corresponding
pattern variations (blue circles) are highly nonlinear, with a number of outliers present (red stars).

recent literature we recognize two groups of approaches to learning over sets of vectors:
statistical and principal-angle based.

Statistical methods Statistical learning approaches rely on the assumption that vectors
x of the i-th class are independently and identically (i.i.d.) drawn samples from p(i)(x).
The problem of set matching then becomes that of estimating each underlying probability
density and comparing two such estimates. In the work of Shakhnarovich et al. [19],
densities p(i)(x) are modelled as multivariate Gaussians, estimated with Probabilistic
PCA [21] and compared using the Kullback-Leibler (KL) divergence [6]. Arandjelović
et al. criticized this approach for its insufficiently expressive modelling and proposed
a kernel-based method to implicitly model nonlinear, but intrinsically low-dimensional
manifolds of faces [2]. In this work, the authors also argue against the use of KL di-
vergence due to its asymmetry and demonstrate a superior performance of the Resistor-
Average distance [13] on the task of AFR under mildly varying imaging conditions. In [3],
Arandjelović et al. proposed a Gaussian Mixture Model for high-dimensional density es-
timation. The advantage of this approach over the previously mentioned kernel method
lies in its more principled modelling of densities confined to nonlinear manifolds; however
this benefit comes at the cost of increased difficulty of divergence computation, performed
using a Monte-Carlo algorithm.

Principal angle-based methods Principal angles are minimal angles between vectors
of two subspaces (see Section 2). Since the concept of principal angles was first intro-
duced by Hotelling in [12], it has been applied to in various fields [10, 14, 17]. Of most
relevance to the work addressed in this paper is the Mutual Subspace Method (MSM) of



Yamaguchi et al. [24]. In MSM the sum of cosines of the first (i.e. smallest) few princi-
pal angles1 is used as a similarity measure between linear subspaces used to compactly
characterize vector sets. MSM has been successfully used for face recognition [24] and
ship identification [16] (for evaluation results also see [2, 3]). In the related Constrained
MSM [9], vector sets are projected to the linear Constraint subspace that attempts to max-
imize the separation (in terms of principal angles) between vector spaces corresponding
to different classes, under the assumption of their linearity.

MSM-based methods have two major shortcomings: the limited capability of mod-
elling nonlinear pattern variations and the ad-hoc fusion of information contained in
different principal angles. The assumption of linearity of modelled vector subspaces is
important, both because it means that MSM is incapable of differentiating between two
nonlinear manifolds embedded in the same linear space and because of the sensitivity of
such estimate to particular data variation [2]. In [23] Wolf and Shashua show how prin-
cipal angles between nonlinear subspaces can be computed using the “kernel trick” [18].
However, the reported evaluation was performed on a database of a rather small size,
making it difficult to judge the performance of their method. Additionally, as in all kernel
approaches, finding the optimal kernel function is a difficult problem.

An attractive feature of MSM-based methods is their computational efficiency: prin-
cipal angles between linear subspaces can be computed rapidly [5], while the estimation
of linear subspaces can be performed in an incremental manner [11, 20].

Densities vs. subspaces As a conclusion to this section, we would like to briefly dis-
cuss the advantages and disadvantages of the two learning approaches: one which learns
densities confined to low-dimensional subspaces and the other which learns the subspaces
themselves. In many computer vision applications, due to different data acquisition condi-
tions, the frequency of occurrence of a particular pattern can vary arbitrarily between the
training stage and a novel input to the system 2. In this case, subspace learning techniques
are more applicable as they effectively place a uniform prior over a space of possible pat-
tern variation. On the other hand, if there is a reason to believe that training and novel
data share some statistical properties, density-based methods may produce better results.
In AFR work of Arandjelović et al. [3], for example, the authors note that anatomical
constraints and the constraints of the imaging setup make certain head poses more likely
than others, therefore opting for a statistical approach to recognition. The point to take is
that neither of the two approaches is inherently the right one, but that the choice between
the two is dictated by a particular problem.

2 Boosted Manifold Principal Angles (BoMPA)
Principal, or canonical, angles 0 ≤ θ1 ≤ . . . ≤ θD ≤ (π/2) between two D-dimensional
linear subspaces U1 and U2 are uniquely defined as the minimal angles between any two
vectors of the subspaces:

cosθi = max
ui∈U1

max
vi∈U2

uT
i vi (1)

1In statistics, the cosines of canonical angles are termed canonical correlations.
2The term “arbitrarily” should be taken in practical terms i.e. given the parameters which one can realistically

expect to model, control or affect.
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Figure 2: Principal vectors in MSM: The first 3 pairs (top and bottom rows) of principal vectors
for a comparison of two linear subspaces corresponding to the same (a) and different individuals
(b). In the former case, the most similar modes of pattern variation, represented by principal
vectors, are very much alike in spite of different illumination conditions used in data acquisition.

(a) (b) (c)

Figure 3: MSM, BPA and MPA: (a) The first 3 principal vectors between two linear subspaces
which MSM incorrectly classifies as corresponding to the same person (the two data sets are shown
in Figure 1). In spite of different identities, the most similar modes of variation are very much alike
and can be seen to correspond to especially difficult illuminations. (b) Boosted Principal Angles
(BPA), on the other hand, chooses different principal vectors as the most discriminating – these
modes of variation are now less similar between the two sets. (c) Modelling of nonlinear manifolds
corresponding to the two image sets produces a further improvement. Shown are the most similar
modes of variation amongst all pairs of linear manifold patches. Local information is well captured
and even these principal vectors are now very dissimilar.

subject to:
uT

i ui = vT
i vi = 1, uT

i u j = vT
i v j = 0, j = 1, ..., i−1 (2)

We will refer to ui and vi as the i-th pair of principal vectors. Intuitively, the first pair
of principal vectors corresponds to the most similar modes of variation of two linear
subspaces; every next pair to the most similar modes orthogonal to all previous ones.
This concept is illustrated in Figure 2 on the example of sets of face appearance images.

2.1 Learning the Subspace Similarity Function
In Section 1.1 it was argued that one of the weaknesses of previous approaches in the
literature is their use of only the first few principal angles. While these do correspond to
most similar modes of variation of two subspaces, they may be caused by extrinsic factors:
in the case of face images these may be changes corresponding to extreme illumination
conditions, see Figure 3 (a). Given a set of first N principal angles Θ = {θ1, . . . ,θN}, our
aim is to learn the optimal similarity function f (Θ) between the two subspaces.



Boosted Principal Angles In general, each principal angle θi carries some information
for discrimination between the corresponding two subspaces. We use this to build simple
weak classifiers M (θi) = sign [cos(θi)−C]. In the proposed method, these are com-
bined using the now acclaimed AdaBoost algorithm [8]. In summary, AdaBoost learns a
weighting {wi} of decisions cast by weak learners to form a classifier M (Θ):

M (Θ) = sign

[
N

∑
i=1

wiM (θi)− 1
2

N

∑
i=1

wi

]
(3)

In an iterative update scheme classifier performance is optimized on training data which
consists of in-class and out-of-class features (i.e. principal angles). Let the training data-
base consist of sets S1, . . . ,SK ≡ {Si}, corresponding to K classes. In the framework
described, the K(K− 1)/2 out-of-class principal angles are computed between pairs of
linear subspaces corresponding to training data sets {Si}, estimated using Principal Com-
ponent Analysis (PCA). On the other hand, the K in-class principal angles are computed
between a pair of randomly drawn subsets for each Si.

We use the learnt weights {wi} for computing the following similarity measure be-
tween two linear subspaces:

f (Θ) =
1
N

N

∑
i=1

wi cos(θi)/
N

∑
i=1

wi (4)

A typical set of weights {wi} we obtained for our AFR application is shown graphi-
cally in Figure 4 (a). The plot shows an interesting result: the weight corresponding to
the first principal angle is not the greatest. Rather it is the second principal angle that is
most discriminating, followed by the third one. This confirms our observation that the
most similar mode of variation across two subspaces can indeed be due an extrinsic fac-
tor. Figure 3 (b) shows the 3 most discriminating principal vector pairs selected by our
algorithm for data incorrectly classified by MSM – the most weighted principal vectors
are now much less similar. The gain achieved with boosting is also apparent from Fig-
ure 4 (b). A significant improvement can be seen both for a small and a large number of
principal angles. In the former case this is because our algorithm chooses not the first but
the most discriminating set of angles. The latter case is practically more important – as
more principal angles are added to MSM, its performance first improves, but after a cer-
tain point it starts worsening. This highly undesirable behaviour is caused by effectively
equal weighting of base classifiers in MSM. In contrast, the performance of our algorithm
never decreases as more information is added. As a consequence, no special provision for
choosing the optimal number of principal angles is needed.

At this point it is worthwhile mentioning the work of Maeda et al. [15] in which the
third principal angle was found to be useful for discriminating between sets of images of
a face and its photograph. Much like the methods described in Section 1.1, the use of a
single principal angle was motivated only empirically – the described framework can be
used for a more principled feature selection in this setting as well.

2.2 Nonlinear Subspaces
The assumption that patter variations within each class are well represented by a linear
subspace is usually severely limiting, see Figure 1. Our aim is to extend the described
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Figure 4: Boosted Principal Angles: (a) A typical set of weights corresponding to weak principal
angle-based classifiers, obtained using AdaBoost. This figure confirms our criticism of MSM-based
methods for (i) their simplistic fusion of information from different principal angles and (ii) the use
of only the first few angles, see Section 1.1. (b) The average performance of a simple MSM classifier
and our boosted variant.

framework of boosted principal angles to being able to effectively capture nonlinear data
behaviour. We propose a method that combines global manifold variations with more
subtle, local ones.

Without the loss of generality, let S1 and S2 be two vector sets and Θ the set of princi-
pal angles between two linear subspaces. We derive a measure of similarity ρ between S1
and S2 by comparing the corresponding linear subspaces U1,2 and locally linear patches
L(i)

1,2 corresponding to piece-wise linear approximations of manifolds of S1 and S2:

ρ (S1,S2) = (1−α) fG [Θ(U1,U2)]+α max
i, j

fL

[
Θ(L(i)

1 ,L( j)
2 )

]
(5)

where fG and fL have the same functional form as f in (4), but separately learnt base
classifier weights {wi}. Put in words, the proximity between two manifolds is computed
as a weighted average of the similarity between global modes of data variation and the best
matching local behaviour. The two terms complement each other: the former provides (i)
robustness to noise, whereas the latter ensures (ii) graceful performance degradation with
missing data and (iii) flexibility in modelling complex manifolds, see Figure 3 (c)

Finding stable locally linear patches In the proposed framework, stable locally linear
manifold patches are found using Mixtures of Probabilistic PCA (PPCA) [21]. The main
difficulty in fitting of a PPCA mixture is the requirement for the local principal subspace
dimensionality to be set a priori. We solve this problem by performing the fitting in
two stages. In the first stage, a Gaussian Mixture Model (GMM) constrained to diagonal
covariance matrices is fitted first. This model is crude as it is insufficiently expressive
to model local variable correlations, yet too complex (in terms of free parameters) as it
does not encapsulate the notion of intrinsic manifold dimensionality and additive noise.
However, what it is useful for is the estimation of the intrinsic manifold dimensionality
d, from the eigenspectra of its covariance matrices, see Figure 5 (a). Once d is estimated
(typically d ¿ D), the fitting is repeated using a Mixture of PPCA.

Both the intermediate diagonal and the final PPCA mixtures are estimated using the
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Figure 5: Piece-wise Linear Manifolds: (a) Average eigenspectrum of diagonal covariance ma-
trices in a typical intermediate GMM fit. The approximate intrinsic manifold dimensionality can be
seen to be around 10. (b) Description length as a function of the number of Gaussian components
in the intermediate and final, PPCA-based GMM fitting on a typical data set. The latter results in
fewer components and a significantly lower MDL.

Expectation Maximization (EM) algorithm [7] which is initialized by K-means clustering.
Automatic model order selection is performed using the well-known Minimum Descrip-
tion Length (MDL) criterion [7], see Figure 5 (b). Typically, the optimal (in the MDL
sense) number of components for face data sets used in Section 3 was 3.

3 Empirical Evaluation
The proposed algorithm was evaluated in the framework of automatic face recognition.
We used a database with 100 individuals of varying age and ethnicity, and equally rep-
resented genders. For each person in the database we collected 7 video sequences of the
person in arbitrary motion (significant translation, yaw and pitch, and negligible roll). The
users were instructed not to perform extreme facial expressions but many users talked or
smiled during the acquisition, see Figure 1. Each sequence was recorded in a different
illumination setting for 10s at 10fps and 320× 240 pixel resolution. After automatic lo-
calization using a cascaded detector [22] and cropping to the uniform scale of 50× 50
pixels, images of faces were histogram equalized, see Figure 6. Training of all algorithms
was performed with data acquired in a single illumination setting and testing with a single
other – we used 9 randomly selected training/test combinations.

Methods We compared the performance of our learning algorithm, without (MPA) and
with (BoMPA) boosted feature selection, to that of:

• KL divergence algorithm (KLD) [19] ,

• Mutual Subspace Method (MSM) [24],

• Kernel Principal Angles (KPA) [23], and

• Nearest Neighbour (NN) in the Hausdorff distance sense in (i) LDA [4] and (ii)
PCA subspaces, estimated from data.
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Figure 6: Data preprocessing: (a) Left
to right – typical input frame from a video
sequence of a person performing uncon-
strained head motion (320×240pixels), out-
put of the face detector (72× 72 pixels) and
the final image after resizing to uniform scale
(50×50 pixels) and histogram equalization.
(b) Typical outliers – face detector false pos-
itives – present in our data.
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Figure 7: Rank-N Recognition: Shown is
the improvement in rank-N recognition ac-
curacy of the basic MSM, MPA and BoMPA
algorithms. A consistent and significant im-
provement is seen with nonlinear manifold
modelling, which is further increased using
boosted principal angles.

In KLD 90% of data energy was explained by the principal subspace used. In MSM, the
dimensionality of PCA subspaces was set to 9 [9]. A sixth degree monomial expansion
kernel was used for KPA [23]. In BoMPA, we set the value of parameter α in (5) to
0.5. All algorithms were preceded with PCA estimated from the entire training dataset
which, depending on the illumination setting used for training, resulted in dimensionality
reduction to around 150 (while retaining 95% of data energy).

BoMPA implementation From a practical stand, there are two key points in the imple-
mentation of the proposed method: (i) the computation of principal angles between linear
subspaces and (ii) time efficiency. These are now briefly summarized for the implemen-
tation used in the evaluation reported in this paper. We compute the cosines of principal
angles using the method of Björck and Golub [5], as singular values of the matrix BT

1 B2
where B1,2 are orthonormal basis of two linear subspaces. This method is numerically
more stable than the eigenvalue decomposition-based method used in [24] and equally
efficient, see [5] for details. A computationally far more demanding stage of the proposed
method is the PPCA mixture estimation. In our implementation, a significant improve-
ment was achieved by dimensionality reduction using the incremental PCA algorithm of
Hall et al. [11]. Finally, we note that the proposed model of pattern variation within a set
inherently places low demands on storage space.

3.1 Results
The performance of evaluated recognition algorithms is summarized in Table 1. Firstly,
note the relatively poor performance of the two nearest neighbour-type methods – the
Hausdorff NN in PCA and LDA subspaces. These can be considered as proxies for gaug-
ing the difficulty of the recognition task, seeing that both can be expected to perform



KLD NN-LDA NN-PCA MSM KPA MPA BoMPA
mean 19.8 40.7 44.6 84.9 89.1 89.7 92.6

std 9.7 6.6 7.9 6.8 10.1 5.5 4.3
time 7.8 11.8 11.8 0.8 45 7.0 7.0

Table 1: Evaluation results: The mean recognition rate and its standard deviation across different
training/test illuminations (in %). The last row shows the average time in seconds for 100 set
comparisons.

relatively well if the imaging conditions do not greatly differ between training and test
data sets. The KL-divergence based method achieved by far the worst recognition rate.
Seeing that the illumination conditions varied across data and that the face motion was
largely unconstrained, the distribution of intra-class face patterns was significant making
this result unsurprising. This is consistent with results reported in the literature [3].

The performance of the four principal angle-based methods confirms the premises of
our work. Basic MSM performed well, but worst of the four. The inclusion of nonlinear
manifold modelling, either by using the “kernel trick” or a mixture of linear subspaces,
achieved an increase in the recognition rate of about 5%. While the difference in the av-
erage performance of MPA and the KPA methods is probably statistically insignificant, it
is worth noting the greater robustness to specific imaging conditions of our MPA, as wit-
nessed by a much lower standard deviation of the recognition rate. Further performance
increase of 3% is seen with the use of boosted angles, the proposed BoMPA algorithm
correctly recognizing 92.6% of the individuals with the lowest standard deviation of all
methods compared. An illustration of the improvement provided by each novel step in
the proposed algorithm is shown in Figure 7. Finally, its computational superiority to the
best performing method in the literature, Wolf and Shashua’s KPA, is clear from a 7-fold
difference in the average recognition time.

4 Conclusions and Future Work
BoMPA, a novel method for discrimination over vector sets was introduced. In an ex-
tensive empirical evaluation it was demonstrated to perform better than state-of-the-art
algorithms in the literature on the task of face recognition from image sets, extracted
from video.

The main research direction we intend to pursue in the future is the extension of the
concept of principal angles to comparisons of probability densities. Another interesting
direction could be to use an ensemble of BoMPA learners for object recognition using
local image features.
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