






Figure 4. Spanning values of description lengths ob-

tained from the towers of Hanoi (top) and Dance (bot-

tom) data. Best cases (S∗) obtained using the method

described in Sec. 2.2.2 are indicated by square markers.

(Best viewed in color.)

The optimal solution to solve the puzzle requires 5 sym-

bols, which respectively represent a disk to be lifted,

placed, and moved between two out of three towers (3

symbols in total). Fig. 3 shows an example tree con-

structed and symbol representations with κ = 8.

Fig. 4 shows the spanning values obtained while

inducing a grammar for each system ψκ. As can be

seen, the likelihood does not improve as the number

of symbols increases, because the learned model often

fails to capture the regularity due to excessive number

of symbols. The voting scores in Table 1 suggest that

systems ψ3 and ψ5 are selected as the best.

This is reasonable since the towers of Hanoi puzzle

can be also represented using 3 symbols, in which case

they are interpreted as: “Disk lifted“, ”Disk dropped“,

Table 1. Results on the towers of Hanoi (T) and Dance

(C) dataset. α and β denote mean ± standard deviation

of −logP (M) and −logP (D|M), respectively. Votes

(V) are computed by the method described in Section

2.2.2, whereas success rates (S) are computed by com-

paring the parsed symbols.
κ αT βT VT ST αC βC VC SC

1 45.3±7.5 16.3±2.0 2 0.00 34.5±4.1 4.0±1.5 5 0.00

2 142.0±42.4 10.1±1.8 6 0.00 177.4±20.4 3.3±0.9 1 0.00

3 202.5±30.8 4.2±0.6 15 0.00 124.6±10.9 2.9±1.1 10 0.00

4 319.3±43.1 3.0±0.9 8 0.00 173.7±12.0 2.5±1.0 0 0.00

5 356.6±38.2 2.8±0.7 13 0.92 172.4±8.1 2.5±1.0 4 0.00

6 463.0±58.2 2.5±0.6 9 0.50 191.1±10.7 2.2±1.1 8 0.95

7 925.3±133.7 3.3±0.4 0 0.92 259.1±13.5 2.0±0.8 0 0.95

8 947.4±114.6 3.1±0.3 0 0.67 413.2±20.8 2.3±0.5 0 1.00

“Disk transferred”. However, this is not sufficient to

actually solve the puzzle, as the symbol “Disk trans-

ferred” is ambiguous, i.e. it only describes any move-

ment between two towers. Its representation is actually

an averaged histogram of 3 different block transfer ac-

tions between two towers, which lacks specificity for

execution. This is why systems having 5 symbols failed

completely. Our method explicitly takes into account the

problem of defining the right “scale” (scope) of a single

action, which is generally problem-dependent.

To validate, we parse the input data using the obtained

grammar of each system and execute to reproduce ac-

tions. During execution, each parsed symbol is mapped

to the closest executable action, i.e. one of the five pos-

sible movements mentioned above. As the rule of the

puzzle enforces that only a smaller disk shall be placed

on top of a bigger disk, there is always only a single

possibility of moving a disk between two towers. This is

a fair assumption as this rule is always given in prior, not

something to be learned. It is marked as success only if

the parsed symbols lead to solve the puzzle. ψ5 showed

to be the best considering both success rate and the num-

ber of votes, which coincides with the ideal number of

symbols.

The Dance dataset is composed of 6 motion primitives

(a-f): Raise right or left arm (a, b), Raise both arms

(c), Lift left or right leg while raising left or right arm,

respectively (d, e), Spin 360◦ (f ). Dance movements

are represented as (abc)n(def)n, where n = {1, 2, 3}
in our dataset. (See Fig. 2) The result is shown in Fig.4.

The execution is marked as success only if the parsed

symbols exactly match the performed motion primitives.

Note that Fig. 4 is computed without any knowledge

about the success condition, i.e. success rates are used

only to verify the validity of the voting results.

The sample grammars learned from the Dance dataset

are shown in Fig. 5. As stated above, it was origi-

nally demonstrated using 6 symbols. Fig. 5(a) shows

3781



SgSEAB  
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    | SSEAB

    | CEA

[0.399853]

[0.372613]

[0.199826]

[0.027708]

(b) 5 symbols

SgCDD

    | AEBS

    | AEBSS

    | ACBACDSS

[0.416571]
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[0.179596]

[0.014705]

SgSS

    | BCD

    | EGF

    | SSSS

    | EAC

    | SEAFSS

[0.347360]

[0.294369]

[0.263985]

[0.063192]

[0.020580]

[0.010513]

(a) 6 symbols (ideal)

(c) 7 symbols

Figure 5. Example grammars learned from data. (a)

A grammar generated by a system ψ6 having 6 symbols

A-F. (b) has 1 less symbol, where one of the symbols

represents two different actions. (c) has 1 more symbol,

where the same action could be represented with two

different symbols. Low-probability rules (< 3%) exist

due to input data noise.

the learned grammar with the ideal number of symbols,

which are internally represented as A-F. Fig. 5(b) shows

the case where the system lacks one symbol. As a result,

the algorithm needs to reuse one of the symbols to repre-

sent 2 actions which are the most similar to each other

relative to other actions. In contrast, Fig. 5(c) shows a

grammar represented with 7 symbols, where two sym-

bols could be used to execute the same action. Due to the

noise inherent in captured data, there are some erroneous

rules having less than 3% rule probabilities.

4 Conclusions

In this paper, we have presented an unsupervised

method of selecting models with the “right” number

of action symbols. We use hierarchical agglomerative

clustering analysis and Pareto-inspired voting principles

to tackle the balancing problem that commonly occurs

in MDL score computations. It takes into account the

question of choosing the right scope of a single action,

which is generally problem-dependent.

Our method exploits the outcomes of SCFG learning

technique as feedback to tune the number of symbols,

where both grammar learning and symbol discovery are

done in unsupervised way. The results confirm that our

method is capable to discover and learn the optimal set

of action symbols correctly.

The result of the towers of Hanoi shows an interest-

ing aspect where the proposed method captured the 2

most reasonable models, ψ5(ideal) and ψ3, with notable

distinction compared to others. Similarly, in the Dance

dataset, ψ6(ideal) and ψ3 were chosen, which are also
reasonable candidates. The results were obtained with-

out any prior knowledge about the success criteria.

Acknowledgments

This work was partially supported by the EU FP7 projects

ALIZ-E (FP7-ICT-248116) and EFAA (FP7-ICT-270490).

References

[1] J. Aggarwal and M. Ryoo. Human activity analysis: A

review. ACM Computing Surveys, 43(3):16, 2011.
[2] Y. Demiris and B. Khadhouri. Hierarchical attentive

multiple models for execution and recognition of actions.

RAS, 54(5), 2006.
[3] Y. Ivanov and A. Bobick. Recognition of visual activities

and interactions by stochastic parsing. TPAMI, 2000.
[4] K. Kitani, S. Yoichi, and A. Sugimoto. Recovering the

basic structure of human activities from noisy video-based

symbol strings. IJPRAI, 2008.
[5] D. Kulic, W. Takano, and Y. Nakamura. Combining au-

tomated on-line segmentation and incremental clustering

for whole body motions. ICRA, 2008.
[6] P. Langley and S. Stromsten. Learning context-free

grammars with a simplicity bias. In ECML, 2000.
[7] K. Lee, T.-K. Kim, and Y. Demiris. Learning reusable

task representations using hierarchical activity grammars

with uncertainties. In IEEE International Conference on

Robotics and Automation, 2012.
[8] Y. Liang, S. Shih, A. Shih, H. Liao, and C. Lin. Learn-

ing atomic human actions using variable-length markov

models. T. System, Man & Cybernetics, Part B, 2009.
[9] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learn-

ing of human action categories using spatial-temporal

words. IJCV, 79(3):299–318, 2008.
[10] I. Ota, R. Yamamoto, T. Nishimoto, and S. Sagayama.

On-line handwritten kanji string recognition based on

grammar description of character structures. ICPR, 2008.
[11] K. Pastra and Y. Aloimonos. The minimalist grammar of

action. Philosophical Transactions of the Royal Society

B: Biological Sciences, 367(1585):103–117, 2012.
[12] Z. Solan, D. Horn, E. Ruppin, and S. Edelman. Unsu-

pervised learning of natural languages. PNAS, 2005.
[13] A. Stolcke and S. Omohundro. Inducing probabilistic

grammars by bayesian model merging. Gramm. Infer.

and App., pages 106–118, 1994.
[14] S. Wong, T. Kim, and R. Cipolla. Learning motion

categories using both semantic and structural information.

CVPR, 2007.
[15] F. Zhou, F. Torre, and J. Hodgins. Aligned cluster analysis

for temporal segmentation of human motion. In Automatic

Face & Gesture Recognition, 2008.

3782


